
Protocol interface manual

InterBus Master

Hilscher Gesellschaft für Systemautomation mbH
Rheinstraße 15

D-65795 Hattersheim
Germany

Tel. +49 (0) 6190 / 9907 - 0
Fax. +49 (0) 6190 / 9907 - 50

Sales: +49 (0) 6190 / 9907 - 0
Hotline and Support: +49 (0) 6190 / 9907 - 99

Sales e-mail: sales@hilscher.com
Hotline and Support e-mail: hotline@hilscher.com

Homepage: http://www.hilscher.com

Index Date Version Chapter Revision

1 27.05.96 V1.200 all created

2 27.11.97 V1.302 all adaption of new header definitions and new protocol interface manual structure

3 11.02.98 V2.000 all upgrading to the new generation 4 master protocol software with extended and
changed diagnostic

4 29.06.98 V2.008 all description of the bus parameter and slave parameter download function
PCP message interface

5 03.09.98 V2.00A all extention of the Error Codes in PCP Protocol

6 14.03.99 V2.018 all correction of command in IBM_Slave_Diag message to 66dec.
documentation of Get_Configuration and Set_Configuration function
documentation of Delete_Database function
new Protocol-parameter 'usWatchdogtime' implemented
explanation of the PCP-Server services
new chapter: get DEVICE operative without SyCon
Online configuration change functionality by using IBM_Download
extended explanation of Err_Event
PCP capable devices now downloadable via dual-port IBM_Download
procedure

6 26.04.99 V2.022 all new data length for the lengthcodes 12 and 13 , 1 and 2 Bits now

7 08.06.99 V2.026 extention of the slave parameter header functionality, alternative grouping

8 28.09.99 V2.037 - extention of explanation of error numbers in chapter 3.3 Error number 33,34.
- Distinction of 2Kilobyte and 8Kilobyte DEVICEs and the addesses of protocol
 tates and protocol parameter
- new statistic protocol states implemented
- change maximum PCP object length from 237 to 240

9 14.08.00 - new chapter Get_ObjectDictionary and Identify

10 13.07.01 V2.080 - new return errors after downloading a DEVICE parameter data set and
master parameter data set.
- new parameter bMinimizeSyncJitter in protocol parameter area
- new command IBM_Control_Active_Configuration
- new variable Ext_Global_Bits in the global state information field
- further error codes in the chapter error code in the PCP protocol
- remove error 37 in global state field description. This error can not occur at
this position
- addtional error code header in a negative PCP response message with msg.f
= 0x81

Although this protocol implementation has been developed with great care and intensively tested, Hilscher
Gesellschaft für Systemautomation mbH cannot guarantee the suitability of this protocol implementation
for any purpose not confirmed by us in writing.

Guarantee claims shall be limited to the right to require rectification. Liability for any damages which
may have arisen from the use of this protocol implementation or its documentation shall be limited to cases
of intent.

We reserve the right to modify our products and their specifications at any time in as far as this contribu-
tes to technical progress. The version of the manual supplied with the protocol implementation applies.

List of Revisions 2

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

1 Introduction . 5.

1.1 Protocol Signification . 5.

1.2 The Process Data Interface . 5.

2 Protocol Parameters . 6.

2.1 Using Device Driver Function to Write . 6.

2.2 Direct Write Access in Dual-port Memory . 7.

2.3 Explanation of the Protocol Parameters . 7.

3 Protocol States . 9.

3.1 Using Device Driver Functions . 9.

3.2 Direct Read Access in Dual-port Memory . 11.

3.3 Explanation of the Protocol States . 12.

4 The Message Interface . 25.

4.1 The PLC-Task . 25.

4.1.1 IBM_Shared_Memory . 26.

4.2 The IBM-Task . 29.

4.2.1 Starting and Stopping Communication during Runtime . 29.

4.2.1.1 Using Device Driver Function to Write . 29.

4.2.1.2 Direct Write Access in Dual-Port . 29.

4.2.2 Deleting Existing Data Base in the DEVICE . 30.

4.2.3 IBM_Start_Seq . 31.

4.2.4 IBM_End_seq . 32.

4.2.5 IBM_Download . 34.

4.2.5.1 The Download of the Master Parameters . 38.

4.2.5.1.1 Coding of the Master Parameter Data Set . 38.

4.2.5.1.2 Download Message of the Bus Parameters . 40.

4.2.5.2 Download of the Device Parameter Data Sets . 41.

4.2.5.2.1 Coding of the Device Parameter Data Set . 41.

4.2.6 Example of Message Device Parameter Data Sets hexdecimal . 51.

4.2.7 IBM_Device_Diag . 52.

4.2.8 IBM_Get_Physical_Configuration . 57.

4.2.9 IBM_Set_Configuration . 60.

4.2.10 IBM_Control_Active_Configuration . 62.

4.3 The ALPMLIPD-Task . 64.

4.3.1 IBM_Identify . 65.

4.3.2 IBM_Get_ObjectDictionary . 67.

4.3.3 IBM_Read_Request . 69.

4.3.4 IBM_Read_Confirmation . 70.

4.3.5 IBM_Write_Request . 71.

Table of Contents 3

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.6 IBM_Write_Confirmation . 72.

4.3.7 IBM_Read_Indication . 73.

4.3.8 IBM_Read_Response . 74.

4.3.9 IBM_Write_Indication . 75.

4.3.10 IBM_Write_Response . 76.

4.3.11 IBM_Abort . 77.

4.3.12 Error Codes in PCP Protocol . 79.

5 General Procedure how to get the DEVICE operative without SyCon . 80.

5.1 Using Device Driver Functions . 80.

5.2 Using direct access to the dual-port memory . 80.

Table of Contents 4

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

1 Introduction

This manual describes the user interface of InterBus master for the
communication interfaces and the communication module. The aim of this
manual is to support the integration of these devices into own applications based
on device driver functions or direct access into the dual-port memory.

The general mechnism for the data transfer, for example how to send and receive
a message or how to do a warmstart, is protocol independent and for each hard-
ware the same procedure and is described therefore in the 'general definitions'
toolkit manual.

All parameters and data have basically the description LSB/MSB. This
corresponds to the convention of the Microsoft-C-compiler. The storage format
of word oriented send and receive process data of the handled I/O devices is
configureable.

1.1 Protocol Signification

To manage the InterBus protocol 2 tasks are involved in the system. Therefore
following entries for the protocol signification in the variables TaskiName are
done:

Task2Name: 'PLC-TASK'
Task3Name: 'IBM '

1.2 The Process Data Interface

The DEVICE handles 512 bytes send and 512 bytes receive process data in the
lower kbyte of the dual-port memory for the InterBus. To exchange the data bet-
ween the DEVICE and the HOST use the device driver function De-
vExchangeIO()or read and write directly into these locations.
After calling the function DevExchangeIO()the function decides on its own
which handhake mechanism has to be used to read and write the process data in
the rigth manner from and to the DEVICE. If these locations are accessed directly
without using the device driver functionality, than you have to use the right
handshake mechanism to ensure that the data is overgiven safety and valid. See
chapter 'IO Communication with a Process Image' in the 'toolkit general definiti-
ons' manual.

Parameter Address Description

SndPd 000h Send Process Data (HOST → DEVICE → Network)

RecvPd 200h Receive Process Data (Network → DEVICE → HOST)

Introduction 5

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

2 Protocol Parameters

Some important parameters can be handed over to the DEVICE online from the
HOST application. They have a higher priority than the static parameters in the
internal FLASH memory usually configured by SyCon configuration tool. This
ensures for example on each startup of the DEVICE the same behavior for the
process data handshake, don't caring what is configured by SyCon.

2.1 Using Device Driver Function to Write

To hand over these parameters use the device driver function
DevPutTaskParameter(). For parameter usNumber use value 2, because
the parameters must handed over to the task 2. For parameter usSize use value
6, to fix the length of the structure. Point the parameter pvData to the following
structure below.

typedef struct IBM_PLC_PARAMETERStag {
 unsigned char bMode;
 unsigned char bReserved;
 unsigned char bFormat;
 unsigned short usWatchDogTime;
 unsigned char bMinimizeSyncJitter;
 unsigned char abReservedA[2];
 unsigned char abReservedB[8];
} IBM_PLC_PARAMETER;

/* values for bMode */
#define IBM_SET_MODE_BUSSYNC_DEVICE_CONTROLLED 0
#define IBM_SET_MODE_BUFFERED_DEVICE_CONTROLLED 1
#define IBM_SET_MODE_UNCONTROLLED 2
#define IBM_SET_MODE_BUFFERED_HOST_CONTROLLED 3
#define IBM_SET_MODE_BUSSYNC_HOST_CONTROLLED 4
/* values for bFormat */
#define IBM_FORMAT_MOTROLA 0x01
#define IBM_FORMAT_INTEL 0x00

After setting up your values in the structure and copy it with
DevPutTaskParameter() into the assigned dual-port memory area, the
warmstart command must be performed with the DevReset()function. The
most important parameter in this function usMode must be set up to 3 =
WARMSTART. After the warmstart is finished without error the new parameters
are active.

Protocol Parameters 6

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

2.2 Direct Write Access in Dual-port Memory

First the parameters must be written down into the corresponding area of the
dual-port memory. Then a warmstart command must be activated by setting the
Init bit in the variable DevFlags. Then the DEVICE will set them valid (see
the chapter 'initialization of the DEVICE' in the toolkit manual 'general
definitions' for handle of the init procedure).

structure element type address
2K DPM

address
8K DPM

parameter

bMode byte 6C0H 1EC0H process data delivery (0,1,2,3,4)

bFormat byte 6C2H 1EC2H storage format of word oriented
process data (0,1)

usWatchDogTime word 6C3H 1EC3H HOST-supervision time in multiples
of a msec.

bMinimizeSyncJitter byte 6C5H 1EC5H minimize the jitter in bus sychronous
process data handshake mode

2.3 Explanation of the Protocol Parameters

The first parameter bMode fixes the handshake mode for the process data. The
explanation of the different modes and their behavior can be read in the toolkit
manual 'general definitions'.
The second parameter bFormat changes the storage format of word oriented
process data from MSB/LSB to LSB/MSB convention and vice versa. In case of
analog InterBus devices for example which have normally word defined process
data, the values are swapped in their layout format to be compatible to different
data interpreting HOST systems.

The parameter usWatchDogTime fixes the time in multiples of 1msec. the DE-
VICE has to supervise the HOST program if it has started the HOST-watchdog
functionality once.

If set to value 1 the parameter bMinimizeSyncJitter reduces the jitter of
the Bus Sychronous Hot Controlled process data handshake in general. The jitter-
time the outputs are set valid to the InterBus Slave devices after initiating the
handshake is then less or equal 35µsec for each cycle. So the parameter has only
influence on the DEVICEs behavior, if the handshake mode Bus Sychronous
Host Controlled is configured at the same time. Using this mode needs carful
HOST programming else the card could perform a resest if misused.
To reduce the jitter in the bus sychronous mode the DEVICE itself deactivates its
internal cyclic timer routine which normally triggers the hardware-watchdog, up-
dates further cells in the dual-port memory and counts task timers and can cause
if interrupting the standard sychronous handshake a jitter of 300µsec. Disabling
the cyclic timer routine within the DEVICE begins with the first HOST initiated
handshake. Instead of calling the timer routine by a hardware timer now, in mini-
mized jitter mode calling the timer routine is coupled directly to the HOST con-
trolled handshake. After triggering the handshake from HOST side, the latest gi-
ven outputs are driven to the slaves and their inputs are collected and copied back
into the process data input area and the handshake is confirmed.

Protocol Parameters 7

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

But then the DEVICE now calls the timer routine afterwards. Because this takes
up to 300µsec and keeps the DEVICE busy, a next process data handshake
shouldn't be initiated by the HOST faster then 500µsec after getting the confirma-
tion of the last one.
Following problems can now occur :

if the HOST application stops to trigger, the DEVICE will perform an automa-
tic reset after 1.5seconds, because the hardware watchdog isn't triggered any
more within the DEVICE. To prevent this the HOST application can set the
NotReady bit in the cell DevFlags to stop communication or calls the
function DevSetHostState() together with the parameter
HOST_NOT_READY. Then the DEVICE will activate the cyclic timer routine
again.

if the HOST application starts the next process data handshake faster than the
DEVICE needs to execute the timer routine which is 300µsec, the handshake
jitter will be extended to at least 300µsec.

Protocol Parameters 8

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

3 Protocol States

The protocol states built by the DEVICE form the diagnostic interface between
the HOST and the InterBus.

The first structure is a statistic information field. This field informs for example
about the number of driven process data cycles as well as the number of defective
cycles. So this field can be used then on HOST side to calculate the transmission
quality for example.
The second established structure informs about global bus states as well as indivi-
dual states of the managed device stations. The structure will be actualized event
driven on every change value in it. To hold the information preferably compact,
the devicespecific informations are held in state bit fields. The first 4 state varia-
bles in the structure inform about global master and network state informations.
After this field an unused reserved area of 26 byte is following. The following
first 16 bytes characterize each device as configured and handled. The next 16
bytes characterizes each device as active or inactive in the network, followed by
16 bytes which serve to refer the diagnostic bit of each device.

3.1 Using Device Driver Functions

Use the device driver function DevGetTaskState() to read the states. For
parameter usNumber use value 1 for structure 1 and value 2 for structure 2. For
parameter usSize use value 64, which is the length of each structure below.
Point pvData to the corresponding defined structure in your HOST application:

Structure 1:

typedef struct IBM_STATISTICStag {
 unsigned char abReservedI[16]; /* reserved area 1 *
 unsigned long ulCycleCnt; /* number of driven data cycles */
 unsigned long ulDefectiveCycleCnt; /* number of defective data cycles */
 unsigned long ulDiagCycleCnt; /* number of driven diagno. cycles */
 unsigned long ulDeviceErrorCnt; /* number of reported device errors */
 unsigned char abReservedII[16]; /* reserved area 2 */
 unsigned char abReservedIII[16]; /* reserved area 3 */
} IBM_STATISTICS;

Protocol States 9

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Structure 2:

typedef struct IBM_DIAGNOSTICStag {
 struct
 {
 unsigned char bCtrl : 1;
 unsigned char bAClr : 1;
 unsigned char bNonExch : 1;
 unsigned char bPrhlErr : 1;
 unsigned char bEvent : 1;
 unsigned char bNRdy : 1;
 unisgned char bI1Err : 1;
 unisgned char bI2Err : 1;
 } bGlobalBits;

 unsigned char bIBM_State;

 struct
 {
 unsigned char bErr_Dev_Adr;
 unsigned char bErr_Event;
 } tError;

 unsigend short usNumOfDefectiveDataCycles;
 unsigned short usNumOfNetworkReinits;
 unsigned char bExtGlobalBits;
 unsigned char abReserved[7];

 unsigned char abSl_cfg[16];
 unsigned char abSl_state[16];
 unsigned char abSl_diag[16];
} IBM_DIAGNOSTICS;

Protocol States 10

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

3.2 Direct Read Access in Dual-port Memory

Read the structure directly from the following dual-port memory location:

variable type address
2K DPM

address
8K DPM

variable

Reserved-I 16 bytes 700H 1F00H reserved byte area for further use

Cycle_Cnt long 710H 1F10H number of driven process data
cycles

Defective_Cycle_Cnt long 714H 1F14H number of defective process data
cycles

Diag_Cycle_Cnt long 718H 1F18H number of driven diagnostic cycles

Device_Diag_Cnt long 71CH 1F1CH number of device related and
reported diagnostics

Reserved-II 16 bytes 720H 1F20H reserved byte area for further use

Reserved-III 16 bytes 730H 1F40H reserved byte area for further use

variable type address
2K DPM

address
8K DPM

short signification

Global_Bits 1 byte 740H 1F40H collective global error and status
bits

IBM_State 1 byte 741H 1F41H main state of the master system

Err_Dev_Adr 1 byte 742H 1F42H error source and location

Err_Event 1 byte 743H 1F43H corresponding error number

Defective_Datacycles 1 word 744H-
745H

1F44H-1
F45H

number of defective data cycles

Network_Rescans 1 word 746H-
747H

1F46H-1
F47H

number of necessary network
rescans and network reinitializations

Ext_Global_Bits 1 byte 748H 1F48H extended collective error and status
bits

reserved 7 bytes 748H-
74FH

1F48H-1
F4FH

reserved for further use

Sl_cfg 16 bytes 750H-
75FH

1F50H-1
F4FH

see the table below

Sl_state 16 bytes 760H-
76FH

1F60H-1
F6FH

see the table below

Sl_diag 16 bytes 770H-
77FH

1F70H-1
F7FH

see the table below

Protocol States 11

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

3.3 Explanation of the Protocol States

Global_Bits

D7 D6 D5 D4 D3 D2 D1 D0

I2ERR I1ERR NRDY EVE PRHL NEXC ACLR CTRL

CONTROL-ERROR:
configuration or
heavy runtime error

AUTO-CLEAR-ERROR:
DEVICE stopped the comm-
unication to all devices and
reached the auto-clear end
state

NON-EXCHANGE-ERROR
the communication to at least one device
is faulty and no process data is
exchange with it.

PERIPHERAL-ERROR:
at least one device reports peripheral fault.
Source of this error can be a short circuit in one
of the device outputs or the not connected
peripheral voltage.

EVENT-NOTIFICATION:
at least one defective process data cycle was detected or
network has been rescanned and reinitialized

HOST-NOT-READY-NOTIFICATION:
indicates if the HOST program has set its state to operative or not.
If the bit is set the HOST program ist not ready to communicate

OUTGOING-INTERFACE-1-ERROR:
at least one physical defective outgoing interface 1(local bus branch or
installation branch) of one device was detected during the InterBus ID-scan.
Because the defective interface generates a timeout after scanning it, it was
deactivated.

OUTGOING-INTERFACE-2-ERROR
at least one physical defective outgoing interface 2(remote bus branch) of one device
was detected during the InterBus ID-scan. Because the defective interface generates a
timeout after scanning it, it was deactivated.

The bit field serves as the collective display of global error notifications com-
ming from the network or the master at runtime. Because the errors and the loca-
tion can either occur at the DEVICE itself or at the handled devices, they are di-
stinguished within two following bytes. One byte fixes the exact error location
(bus address 0-127 for devices, 255 for the master globally) and an exact error
event (error number). If more than one errror is determined, the location value
shows always the faulty participant with the closest position to the master in the
InterBus.

The CTRL bit indicates heavy runtime errors. Some of them can occur during
startup procedure of the master. For example if the IBS controller chip IX1 of
the card do not respond or the configuration of SyCon has inconsistencies.
Other errors can occur during runtime, for example if the HOST program do
not trigger its watchdog cells in time. Detailed information about the error can
be read out from the cells Err_Dev_Adr and Err_Event.

Protocol States 12

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

The ACLR bit will be set, when the master stops the communication to all its
handled device because of missed devices. Before doing this, is sets all output
values of the left device to the save zero condition. The behavior, if the master
shall shut down or not, when it lost the contact to at least one device, is confi-
gureable in SyCon configuration tool or in the bus parameter download proce-
dure. After the master has shut down only a warm- or coldstart of it can reacti-
vate the communication again.

An activated NEXC bit incdicates that one of the configured device is not ope-
rational because of an configuration fault or simply because it's not present in
the network. Detailed information about the error can be read out from the
cells Err_Dev_Adr and Err_Event.

Some IB-devices have the capability to indicate on InterBus side that they ha-
ve detected low power or a short ciruit in the in the external periphery. If at
least one device reports this error it is shown in the bit PRHL globally. The
cell Err_Dev_Adr indicates which of the handled device reports this error.(
if more peripheral faults were detected at the same time, the value shows the
physically closest device to the master in the InterBus ring indicating this
fault).

The bit EVE will be set during the InterBus process data cycle runtime only. If
it is set once it will not be reseted any more until the DEVICE is rested global-
ly. It indicates that at least one defective process data cycle was detected or in
case of network configuration changes a network reset and rescan had to be
executed. The variables Defective_Datacycles and Network_Re-
scans represent the number of defective data cycle which were detected re-
spectively how many network rescans were done.

The HOST program can set its state to 'operative' or 'non operative' by acces-
sing directly to the dual-port memory with the NotRdy bit in the cell
DevFlags or when device driver functions are used with the DevSe-
tHostState() function. The NRDY bit indicates now, if the HOST has set
its state to 'operative' = 0 or 'non operative' = 1. If SyCon configuration tool is
used for example in debugging session via serial diagnostic port, this bit is al-
so read out and shown and indicates now if the HOST program has set its state
to ready or not.

If the I1ERR bit is set by the DEVICE, at least one local bus interface or re-
mote bus branch interface (called outgoing interface 1) of a device was de-
tected during the ID-scan, which has produced a timeout after it was opened in
this session. This error can only occur at InterBus branch interfaces, because
these are the only components which have interface 1 to make branching in In-
terBus possible. The cell Err_Dev_Adr indicates at which of the handled
device this error was detected.(if more defective interfaces were detected at
the same time, the value shows the physically closest device to the master in
the InterBus ring first).

If the I2ERR bit is set by the DEVICE, at least one remote bus interface (cal-
led outgoing interface 2) of a device was detected during the ID-scan, which
has produced a timeout after it was opened in this session. This error can only
occur either at InterBus branch interfaces or at remote bus devices, because
both are having the outgoing interface 2 to connect it to the next remote bus
device.(if more defective interfaces were detected at the same time, the value
shows the physically closest device to the master in the InterBus ring first).

Protocol States 13

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Octet 2: IBM_State

This variable represents the main state of the master system. Following values are
possible:

00H: state OFFLINE
40H: state STOP
80H: state CLEAR
C0H: state OPERATE

Octet 3: Err_Dev_Adr

Some bits in the Global_Bit field indicating errors in the network or in the
DEVICE itself have always a closer error desciption. In these cases the variable
Err_Dev_Adr represents the source of the error. The source where the error
was detected can be either the DEVICE itself., then the variable contains the va-
lue 255, or the error was detected at or reported by a network device. Then the
variable is filled up with this station address directly and has a range from 0 to
127.

Octet 4: Err_Event

To complete the error description the variable Err_Event delivers next to the
error source the corresponding error number. All possible numbers are listed
below.

Octet 5-6: Defective_Datacycles

The DEVICE counts in this variable the number of defective process data cycles.
An increasing number here is an indication for an electronical influenced network
surrounding or for not well wired InterBus device connections. Normally this
counter should not be incremented by the DEVICE, but if so please check all
your device connections and bus wiring. Note: A defective data cycle is also
counted, if one device reports a peripheral error or a reconfiguration.

Octet 7-8: Network_Rescans

On heavy network errors, for example a disconnected module during runtime, the
DEVICE will automatically execute a network reset and rescan to look for the er-
ror location. Depending on how the card is configured, the master stops then or
rerun the network with all refound modules. For each of such network resets and
rescans the variable Network_Rescans will be incremented by a value of one.

Protocol States 14

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Ext_Global_Bits

D7 D6 D5 D4 D3 D2 D1 D0

PUE MFAIL MWARN WARN

WARNING:
DEVICE detected an
increased number of
defective data cycle
within a defined time
period. Please check
diagnostic
informaion for
datailed error
location.

MAU-WARNING:
at least one slave has reached
the maximum possible power
of its optical transmitter to
guarantee an errorfree interbus
transmission. The optical
interface must be checked of
this slave.

MAU-FAIL:
at least one slave device has detected a
high signal input level for a minimum time
of 64bits at one of its phyical interbus
intefraces. This error is an indiaction for a
loose connection at this slave, please
check wiring.

POWER-UP-EVENT:
DEVICE has detected a slave device which has
performed a power up reset during runtime. This is
not allowed normally during runtime and the slave
power must be checked if it is stable.

reserved for further use

Protocol States 15

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Variable Sl_cfg

This variable is a field of 16 bytes and contains the paremeterization state of each
device station. The following table shows, which bit is related to which slave
station address:

Bit D7 D6 D5 D4 D3 D2 D1 D0

Offset

750H 7 6 5 4 3 2 1 0

751H 15 14 13 12 11 10 9 8

752H 23 22 21 20 19 18 17 16

...

75FH 127 126 125 124 123 122 121 120

Table of the relation between node address and the Sl_Cfg bit

If the Sl_cfg bit of the corresponding slave is logical
'1', the slave is configured in the master, and serviced in its states.
'0', the slave is not configured in the master.

Variable Sl_state

This variable is a field of 16 bytes and contains the state of each slave station.
The following table shows, which bit is related to which slave station address:

Bit D7 D6 D5 D4 D3 D2 D1 D0

Offset

760H 7 6 5 4 3 2 1 0

761H 15 14 13 12 11 10 9 8

762H 23 22 21 20 19 18 17 16

...

76FH 127 126 125 124 123 122 121 120

Table of the relation between slave station address and the Sl_state bit

If the Sl_state bit of the corresponding slave station is logical
'1', the slave and the master are exchanging their I/O data.
'0', the slave and the master are not exchanging their I/O data.

Protocol States 16

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Variable Sl_diag

This variable is a field of 16 bytes containg the diagnostic bit of each slave. The
following table shows the relationship between the slave station address and the
corresponding bit in the variable Sl_diag.

Bit D7 D6 D5 D4 D3 D2 D1 D0

Offset

770H 7 6 5 4 3 2 1 0

771H 15 14 13 12 11 10 9 8

772H 23 22 21 20 19 18 17 16

...

77FH 127 126 125 124 123 122 121 120

Table of the relationship between slave station address and the Sl_diag variable

If the Sl_diag bit of the corresponding slave station is logical
'1', latest received slave diagnostic data are available in the internal

diagnostic buffer. This data can be read by the user with a message
which is described in the chapter 'The message interface' in this
manual.

'0', since the last diagnostic buffer read access of the HOST, no values
were change in this buffer.

Protocol States 17

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Following error numbers are valid for Err_event, if Err_dev_adr is 255:

err_event description error source help

0 no actual error

52 unknown process data
handshake

warmstart check warmstart parameters
in the HOST program.

56 no device table found DEVICE DEVICE is not configured via
SyCon

57 IBS controller chip is defective
and do not respond

DEVICE replace DEVICE

101 configured ident-code or length
code different to connected
network constellation

network check configured length
codes or ID-codes of all
configured slave devices

102 too many devices are
connected to the DEVICE

network reduce connected device
number

103 configuration has changed
during the ID-Scan cause by
interruption of the ID-scan
cycle because of short non
diagnosticable network errors.

network wait until DEVICE does next
ID-scan automatically

104 set up of the actual network
configuration after the main
InterBus ID-scan failed

network contact
technical support

105 interruption of the ID-scan
cycle because of short non
diagnosticable network errors,
caused by installation errors or
a defective slave module

network wait until DEVICE does next
ID-scan automatically

106 expected, already scanned
slave module is missing during
next ID-scan cycle

network wait until DEVICE does next
ID-scan automatically

107 configuration has changed
during runtime, a running
device is not responding any
more

network check your network and wait
for the next automatic
ID-scan

108 no connection to the InterBus.
Interruption of the connection
between DEVICE and first
remote bus module in the
network

network check the connection
between DEVICE and first
network device

120 local bus inconsistent configuration a local bus segment contains
remote bus slaves in the
same level.

121 inconsistent group or
alternative

configuration a local bus segment defined
as group does contain
different group or alternative
numbers. Or a leading
branch IB device of an
alternative, has non or a
wrong alternative number

122 group zero configuration a slave does have an
alternative number, but not a
group number. A group
number must be defined for
that device too.

220 HOST watchdog failed, timeout
occured

HOST check the HOST program if it
is running and retriggering
the software watchdog

Protocol States 18

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

221 HOST program does not
acknowledge the process data
indication in time when process
data handshake mode 0 is
used

HOST check if the HOST program
is fast enough to acknowlege
fast bus cycles in sychronous
mode

224 error in IBS controller
communication

DEVICE contact
technical support

Protocol States 19

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

following error numbers are valid for Err_event, if Err_dev_adr is < >
255:

err_event description error source help

0 no error event

InterBus network specific error codes

30 device was missing in the last
activated network scan cycle

device /
configuration

check configuration or wiring

A configured slave module could not be detected within the InterBus network.
A physical problem of wiring could not basically be detected, so the problem
is either a network configuration error or the module is not really connected at
its physical position to the previous InterBus module in the InterBus ring.
So please compare the actual activated module list with the real physical
connected one. If no difference can be detected, check the wire between the
module and its physical previous module. If it seems to be ok watch the LED
'RC' or 'CC' on the module. If it is not statically on the wiring is not ok. Note
that the standard InterBus cable must contain a special pin bridge in the
outgoing plug connector so that the module to which the module shall be
connected to can recognize a further connected device. Please check this pin
bridge within the outgoing plug connecter in its functionality.

31 device reports other
identification code than the
configured value

device /
configuration

compare configured
identification code of the
module with the real present
one

The module itself could be scanned in the last activated network scan, but
the InterBus specific identification code that was reported by it within this
scan differs from the configured value.
The identification code fixes the slave modules functionality, defines its class
and defines the support of I/O process data. The master denies the process
data access if the values are different. So please compare the identification
code that is configured with the modules real identification code. If no slave
device manual is available the identification code can usually be found
printed on the front panel of the module.

32 device reports other length
code than the configured value

device /
configuration

compare configured length
code of the module with the
real present one

The module itself could be scanned in the last activated network scan, but
the InterBus specific length code that was reported by it within this scan
differs from the configured value.
The length code fixes the slave modules process data length within the
InterBus ring. The master denies the process data access if the values are
different. So please compare the length code that is configured with the
modules real length code. Please refer to the length code list in a chapter
below of this manual to get the relation between length code and real process
data width, if no device description manual is available.

33 further device at outgoing
interface 1detected which are
not configured

device /
configuration

check the real configuration
for these non configured
devices

This problem is actually caused by a configuration error. The next configured
device has a different bus segment level than the device which is configured
at this position. This can have two reasons. 1. The bus segment level of the
following device is configured wrong 2. The master has detected really at
least one further device at the outgoing interface 1 of this station which is not
configured. An outgoing interface 1 is only available at InterBus branch
interfaces so this problem could be actual located within the connected
branch of this module.
Please compare the actual configuration with the real physical present one
,especially in missing devices and configured bus segment levels and
reconfigure the InterBus configuration in the missing station.

Protocol States 20

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

34 further device at outgoing
interface 2 detected which are
not configured

device /
configuration

check the real configuration
for these non configured
devices

This problem is actually caused by a configuration error. The next configured
device has a different bus segment level than the device which is configured
at this position. This can have two reasons. 1. The bus segment level of the
following device is configured wrong 2. The master has detected really at
least one further device at the outgoing interface 2 of this station. An
outgoing interface 2 is available in local and remote bus installations. If this
problem occurs within a local bus, the whole local bus is deactivated. If this
problem occurs within the remote bus, the previous faultless InterBus ring
remains operative.
Please compare the actual configuration with the real physical present one
,especially in missing devices and configured bus segment levels and
reconfigure the InterBus configuration in the missing station.

36 device reports peripheral error device check if the power of the
external periphery of this
module is connected or if
outputs producing short
circuits

If a slave module signals a module error, the module has either detected a
failure of its peripheral power supply or a short circuit at at least one of its
peripheral inputs or outputs. The module is basically operative and remains
active in the InterBus network.
The exact error source cannot be defined here, because it is module
manufacturer specific to report such an error. But basically the LEDs on the
module can be checked first. The LED 'Us' should be checked to get the
indication if the power of the periperal system is present. Then, depending on
the modules functionality, the LEDs of the inputs and outputs or special error
I/O LEDs should be watched, which can indicate an I/O error source.

40 defective outgoing interface 1(
local bus branch or installation
branch)

device check the wiring of the
corresponding IB interface

The outgoing remote or local bus branch interface of the module produces an
InterBus timeout error, when the interface was 'opened' logical and scanned
for further connected devices during the scan-cycle.
A timeout error is normally produced when a network wire is plugged into the
outgoing interface, but no further module is really connected to it. Please
check the connection between the module and the next following branch
module. If it seems to be ok then watch the LEDs on the branch modules.

In case of a local bus branch all branch modules must have a lightning 'RC'
or 'CC' LED which indicates principle master connection. If one is not
statically on then the wiring between this and the previous module is
interrupted. Please check this wire connection or simply replace the cable
before modules are replaced. If all LEDs are on, at least the send
transmission direction seems to be ok. So then either one of the following
modules is defective and do not send back any InterBus information or the
ingoing line of this branch modules interface is physically defect.

In case of a remote bus branch the LEDs 'RC' or 'CC' must be statically on at
the directly following remote bus module of the branch. If not so, the wire
connection between both modules could be interrupted. Because an InterBus
cable contain send and receive line within one wire, the error can come either
from the outgoing branch coupler interface or from the ingoing interface of
the following module. Before modules are replaced, the replacement of the
wire should be tried first. If the LED is indicated then the error can come from
the backgoing line of the following module or from the ingoing line of the
branch modules interface. Please try replacement of the modules each by
each.

41 defective outgoing interface 2(
remote bus)

device check the wiring of the
corresponding IB interface

Protocol States 21

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

The outgoing remote interface of the module produces an InterBus timeout
error, when the interface was 'opened' logical and scanned for further
connected devices during the scan-cycle.
A timeout error is normally produced when a network wire is plugged into the
outgoing interface, but no further module is really connected to it.
Please check the connection between the module and the next following
remote bus module. If it seems to be ok then watch the LED 'RC' or 'CC' on
the following module. If it is not statically on the trasnmission line in the
direction branch module to remote module is not ok. Replace wire before
replacing the modules. If the LED is indicated then either the following
module is defective and do not send back any InterBus information or the
ingoing interface of the branch module is physically defect.

42 device hasn't reported its ident
and length code right in the last
network scan cycle

network check surrounding of the
device if some other electrical
disturbing devices can be
found

On each network scan cycle that is necessary during runtime because of
process data cycle errors, the master checks the actual active identification
list of devices against the internal configured list. If a module that was
actually classified as active once reports back a different length or ID-code
this error is reported.
Such an error normally can only occur if a device was powered up again and
is simultaniously capable to report in its ID-regioster the socalled 'µP not
ready = 0x0038' identification code during its startup. So this error event is a
direct indication for a powered down slave module. Check the shielding of the
network wire and look for the right grounding of the module. Especially check
the power of the modules logic for dropouts or spikes.

46 device handler stopped DEVICE master has stopped the
InterBus communication to
that device

err_event description error source help

Download configuration errors in case of SyCon download

70 double address configured DEVICE
configuration

contact
technical support

71 device data set length faulty DEVICE
configuration

contact
technical support

72 process data configuration
length faulty

DEVICE
configuration

contact
technical support

73 additional table length faulty DEVICE
configuration

contact
technical support

74 PCP data length faulty DEVICE
configuration

contact
technical support

75 size of whole data set
inconsistent

DEVICE
configuration

contact
technical support

76 additional table inconsistent DEVICE
configuration

contact
technical support

77 maximum output process data
offset overstepped

DEVICE
configuration

contact
technical support

78 maximum input process data
offset overstepped

DEVICE
configuration

contact
technical support

79 maximum offset addresses
overstepped > 255

DEVICE
configuration

contact
technical support

80 module count in comparison
oto the offsets inconsistent

DEVICE
configuration

contact
technical support

Protocol States 22

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

81 output module number unequal
output offset number

DEVICE
configuration

contact
technical support

82 input module number unequal
input offset number

DEVICE
configuration

contact
technical support

83 real output length unequal to
configured modules length

DEVICE
configuration

contact
technical support

84 real input length unequal to
configured modules length

DEVICE
configuration

contact
technical support

85 overlapped output data
configured

DEVICE
configuration

contact
technical support

86 overlapped input data
configured

DEVICE
configuration

contact
technical support

Protocol States 23

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

err_event description error source help

87 output device has also defined
input modulss

DEVICE
configuration

contact
technical support

88 input device has also defined
output modulss

DEVICE
configuration

contact
technical support

89 output device has defined input
modules

DEVICE
configuration

contact
technical support

90 input device has defined output
modules

DEVICE
configuration

contact
technical support

91 device is configured to
impossible installation depth

DEVICE
configuration

contact
technical support

92 configured ident code not
supported by the DEVICE

DEVICE
configuration

contact
technical support

Protocol States 24

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4 The Message Interface

The following send and receive messages are exchanged with the DEVICE via its
mailboxes in the structure like it is described in the chapter 'definition of the
message interface' in the toolkit manual.

To put and get messages to respectively from the DEVICE through its mailboxes
use the device driver functions DevPutMessage() or DevGetMessage().
With direct access to the dual-port memory you must write the message in the
DevMailbox or read the message out of the HostMailbox with the
mechanism described in the toolkit manual.

4.1 The PLC-Task

The PLC task manages the process input and output data and handle the steering
of the IBS cycles corresponding the parameterization. Therefore the task commu-
nicates with the IBM task and starts the process data cycles according to the
parametrized operation mode. The task has implemented the following functions:

activate data cycles

mapping of the physical addresses of the data to the logical addresses of the
data in the dual-port memory.

The task manages following message commands:

IBM_Shared_Memory write consistent data block into the send
process data SndPd during one InterBus
cycle or read consistent data block from
RecvPd during one InterBus cycle

The Message Interface 25

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.1.1 IBM_Shared_Memory

command message

variable type value description

msg.rx byte 2 receiver = PLC-Task

msg.tx byte 16 transmitter = HOST

msg.ln byte
8

8+m

length of the message
read access
write access

msg.nr byte j number of message (optional)

msg.a byte 0 no answer number

msg.f byte 0 no error

msg.b byte 17 command : IBM_Shared_Memory

msg.e byte 0 unused

msg.
DeviceAdr

byte 0 device address unused

msg.
DataArea

byte
0
1
2

data area:
data fnc decides the data area
receive process data area
send process data area

msg.
DataAdr

word
0-255
0-511
0-255

address offset refer to the data type
word-offset address
Byte-offset address
word-offset address if bit access

msg.
DataIdx

byte 0-15 bit position within the word offset address if bit
access

msg.
DataCnt

byte m count of read or write data referring to the
datatype

msg.
DataType

byte
6

5,10
14

datatype :
TASK_TDT_UINT16: word
TASK_TDT_UINT8: octet-string
TASK_TDT_BIT: bit

msg.
DataFnc

byte
1
2

function :
TASK_TFC_READ = read access
TASK_TFC_WRITE = write access

msg.d[0] byte x write access: first data to be written
read access: unused

...

msg.d[m-1] byte z write access: last data to be written
read access: unused

The Message Interface 26

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

The command serves the user program to write data of a definite length into the
send process data buffer or to read from the receive process data. The command
can be used in all process data handshake modes.
With the command the data types word, bytes or bits can be selected. The
firmware of the DEVICE guarantees that the read or write access of the data will
be done safely during two active DP cycles.
This command is an other possibility to get access to the process data in the dual-
port memory. Its disadvantage is the slower access then the direct reading or wri-
ting the dual-port memory. But the main advantage is that you have the access to
the process data also via a message, when an old driver for example has already
message functionality in it. We use this message in all diagnostic tools too.

The data type is fixed in the byte msg.DataType. Only the values decimal 6
for words, 5 or 10 for byte strings and 14 for bits are allowed.

The read access is distinguished from the write access in the byte
msg.Function. A 1 is valid for read access and 2 for write access.

The data area to be read from, is fixed in msg.DataArea. 1 is valid for the
receive process data buffer and 2 for the send process data buffer. In case of the
value 0, the value placed in msg.Function decides the data area
automatically.

The count of the data to be read or to be written is fixed by the value of
msg.DataCnt. The count refers to the chosen data type. Maximum permitted
values are 119 for words, 239 for byte and 255 for bits.

The offset address is fixed in the word msg.DataAdr. The specified address
must be refered on the chosen data type and is interpreted from the DEVICE as
the relative address to the start address in the send process data or the receive
process data. The maximum values are decimal 255 for word, 511 or byte and
255 for bit access. In case of bit access the value in msg.DataIdx additionally
fixes the relative offset in the word to be read or to be written. For the other ac-
cesses the value doesn't have any meaning.

The data at msg.d[] are unused, if read access is chosen, while in write access
in this area the send data must be written in. Words must be written in Intel
format - LSB before MSB - and bits must be put in there in packed form. For
example to write 5 bits, the first data byte msg.d[0] must be placed in the bits
0-4 to be valid.

The Message Interface 27

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

answer message to the user

variable type value description

msg.rx byte 16 receiver = HOST

msg.tx byte 2 transmitter = PLC-Task

msg.ln byte
8+m

8
0

length of the message
read access
write access
error

msg.nr byte j number of message

msg.a byte 17 answer: IBM_Shared_Memory

msg.f byte 0
f

no error
error code see following table

msg.b byte 0 no command

msg.e byte 0 unused

msg.
DeviceAdr

byte 0 device address unused

msg.
DataArea

byte
0
1
2

data area:
data fnc decides the data area
receive process data area
send process data area

msg.
DataAdr

word

0-255
0-511
0-255

address offset refer to the data type
word-offset address
Byte-offset address
word-offset address if bit access

msg.
DataIdx

byte 0-15 bit position within the word offset address if bit
access

msg.
DataCnt

byte m count of read or write data referring to the
datatype

msg.
DataType

byte
6

5,10
14

data type :
TASK_TDT_UINT16: word
TASK_TDT_UINT8: octet-string
TASK_TDT_BIT: bit

msg.
DataFnc

Byte
1
2

function :
TASK_TFC_READ = read access
TASK_TFC_WRITE = write access

msg.d[0] Byte x read access: first data be read
write access: unused

...

msg.d[m-1] z read access: last data be read
write access: unused

In the answer message the msg.f byte gives the information, if the desired com-
mand could be executed. If the byte is 0, an positive job result is send back.

The Message Interface 28

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2 The IBM-Task

The IBM task handles the communication with the fieldbus controller and does
the mapping of the process data from their physical position in the InterBus ring
to the configured logical addresses in the dual-port memory.

Because the task holds the direct contact to the IB controller it recognizes every
error that occurs in the network, so that the second function of this task is the In-
terBus configuration and diagnostic. Therefore the IB-device specific and the
global bus status information are also managed by this task.

The task manages following message commands:

IBM_Start_Seq start download of multiplexed IB-device
parameters

IBM_End_Seq end of a multiplexed download sequence

IBM_Download non static download of bus and IB-device
parameters

IBM_Device_Diag read out the status structure of an
IB-device

IBM_Get_Physical_Configuration executes an automatic network scan of the
connected IB-devices and returns the
constellation.

IBM_Set_Configuration Enables and disables InterBus slaves du-
ring runtime

IBM_Control_Active_Configuration Enables and disables slaves, groups or
alternatives.

4.2.1 Starting and Stopping Communication during Runtime

4.2.1.1 Using Device Driver Function to Write

Use the function DevSetHostState() together with the parameter
HOST_NOT_READY to stop the network communication. Use the parameter
HOST_READY to start or restart the communication.

4.2.1.2 Direct Write Access in Dual-Port

To start and stop the InterBus communication of the DEVICE you have to clear
and set the bit NotRdy in the cell bDevFlags. Clearing the bit will start the
network communication while setting the bit stops the communication.

ATTENTION: Stopping the communication will always cause a reset of the net-
work modules output data.

The Message Interface 29

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.2 Deleting Existing Data Base in the DEVICE

Normally the configuration will be downloaded by the SyCon configuration tool
statically into the FLASH memory. The DEVICE reads out this data block during
its startup. If all parameters are valid the DEVICE starts its slave handlers and
goes into the mode OPERATE. Then the message download procedure like it is
described in the chapters below can not be used any more.

If no static download of the configuration data is wished, all these data can be
handed over online to the DEVICE by a message download from the HOST
program using the functions Start,End and Download. But before doing this, you
have to prevent the DEVICE to start up with possible downloaded static parame-
ters. This can be done by deleting the data base by message service before. Then
the DEVICE starts up without finding any configuration data base and then the
online message download can be proceeded by the HOST program like it is
described in the following chapters.
IMPORTANT NOTE! If no data base exists within the DEVICE, the DEVICE
must be initialized with protocol parameters (see chapter: protocol parameters)
before the message download is done, to fix the process data handshake mode
and the storage format etc.

command message

variable type value signification

Message header msg.rx byte 0 receiver = RCS-Task

msg.tx byte 16 transmitter = user at HOST

msg.ln byte 2 length of the message

msg.nr byte j number of the message

msg.a byte 0 no answer

msg.f byte 0 no error

msg.b byte 6 command = data base access

msg.e byte 0 extention, not used

Service header msg.d[0] Byte 4 mode = delete data base

msg.d[1] Byte 8 startsegment of the data base

answer message

variable type value signification

Message header msg.rx byte 16 receiver = user at HOST

msg.tx byte 0 transmitter = RCS-Task

msg.ln byte 1 length of message

msg.nr byte j number of the message

msg.a byte 6 answer = data base access

msg.f byte f error, state

msg.b byte 0 no command

msg.e byte 0 extension

The time for deleting the data base depents on the used FLASH memory, so sen-
ding back the answer message can take up to 3 seconds

The Message Interface 30

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.3 IBM_Start_Seq

command message

variable type value signification

Message header msg.rx byte 3 receiver = IBM-Task

msg.tx byte 16 transmitter = user at HOST

msg.ln byte 4 length of the message

msg.nr byte j number of the message

msg.a byte 0 no answer

msg.f byte 0 no error

msg.b byte 67 command = IBM_Start_Seq

msg.e byte 0 extention, not used

IBM_START_SEQ_REQUEST msg.d[0] Byte 0 Req_Adr, unused

msg.d[1] Byte
0-126

Area_Code,
InterBus-slave address

msg.d[2] Word 0-65535 Timeout, not supported

The command starts a blocked download in the stated Area_Code. To complete
the download the command IBM_End_Seq must be called after finishing the
download sequence.

answer message

variable type value signification

Message header msg.rx byte 16 receiver = user at HOST

msg.tx byte 3 transmitter = IBM-Task

msg.ln byte 1 length of message

msg.nr byte j number of the message

msg.a byte 67 answer = IBM_Start_Seq

msg.f byte f error, state

msg.b byte 0 no command

msg.e byte 0 extention, not used

IBM_START_SEQ_CONFIRM msg.d[0] byte 240 Max_Len_Data_Unit

The value Max_Len_Data_Unit fixes the maximum length of the parameter
Data per IBM_Download message.

Possible values for msg.f are the following:

error number msg.f signification

0 no error

52 CON_NI, Area_Code unknown

See below the corresponding structures in the header file:

IBM_START_SEQ_REQUEST
IBM_START_SEQ_CONFIRM

The Message Interface 31

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.4 IBM_End_seq

command message

variable type value signification

Message header msg.rx byte 3 receiver = IBM-Task

msg.tx byte 16 transmitter = user at HOST

msg.ln byte 1 length of the message

msg.nr byte j number of the message

msg.a byte 0 no answer

msg.f byte 0 no error

msg.b byte 69 command = IBM_End_Seq

msg.e byte 0 extention, not used

IBM_END_SEQ_REQUEST msg.d[0] byte 0 = NEW_ENTRY
1=CHANGE_ENTRY

2 =REMOVE_ENTRY
3=INSERT_ENTRY

Req_Add, defines function

The command ends the blocked download and activates the previously sequen-
tially downloaded data.

The parameter Req_Add defines the download function in case of download a
slave data set.
To defined a new entry use the command NEW_ENTRY.
Is is possible to delete an existing entry by setting the parameter to REMO-
VE_ENTRY. All other entries that are set up at execution time of this command
with higher Area_Code number will be corrected downwards. That means if
entry 3 is removed for example, entry 4 will be 3 and entry 5 will be 4 and so on.
It is possible to insert a new entry between to existing data sets by setting the pa-
rameter to INSERT_ENTRY. All other entries that are set up at execution time of
this command with higher and equal Area_Code number will be corrected up-
wards. That means if entry 3 is inserted for example, old entry 3 will be 4 and old
entry 4 will be 5 and so on.
It is possible to simply change and existing entry if the parameter is set up to va-
lue CHANGE_ENTRY. Other entries are not influenced by this command.

answer message

variable type value signification

msg.rx byte 16 receiver = user at HOST

msg.tx byte 3 transmitter = IBM-Task

msg.ln byte 0 length of message

msg.nr byte j number of the message

msg.a byte 69 answer = IBM_End_Seq

msg.f byte f error, state

msg.b byte 0 no command

msg.e byte 0 extention, not used

The Message Interface 32

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Possible values for msg.f are the following :

error signification

0 no error

52 CON_NI, Area_Code unknown

57 CON_SE, sequence error

70 slave address already configured

71 data set field length faulty

72 configuration field data length faulty

73 additonal table field length faulty

74 pcp field length faulty

75 whole data set size inconsistent

76 additional table inconsistent

77 output process data offset address oversteps maximum range

78 input process data offset address oversteps maximum range

79 too much input and output offset addresses configured

80 number of configured modules does not correspond to the number of
configured offset addresses

81 number of configured output modules does not correspond to the number of
output offset addresses

82 number of configured input modules does not correspond to the number of
input offset addresses

83 the real output process data length of the slave resulting from its length code is
smaller than the resulting value from the configured output modules

84 the real input process data length of the slave resulting from its length code is
smaller than the resulting value from the configured input modules

85 address conflict of output process data

86 address conflict of input process data

87 ID-code of module indicates process output data only , but inputs modules are
also defined

88 ID-code of module indicates process input data only, but output modules are
also defined

89 ID-code of module indicates process output data, but no output modules
defined

90 ID-code of module indicates process input data only, but no input modules
defined

91 slave configured to wrong level or level out of range 0 - 12

92 configured length code is unknown and can not be handled

93 a slave data shall be removes that doesn't exits

94 a slave data set of an active slave shall be changed. That is not possible in
online configuration mode. Use IBM_Set_Configuartion to switch off the module

95 an entry shall be removed that configuration data differs from the message data

See below the corresponding structure in the header file:

IBM_END_SEQ_REQUEST

The Message Interface 33

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.5 IBM_Download

command message

variable type value signification

Message header msg.rx byte 3 receiver = IBM-Task

msg.tx byte 16 transmitter = user at HOST

msg.ln byte m + 4 length of the message

msg.nr byte j number of the message

msg.a byte 0 no answer

msg.f byte 0 no error

msg.b byte 68 command = IBM_Download

msg.e byte 0 extention, not used

IBM_DOWNLOAD_REQUEST msg.d[0] byte 0 = NEW_ENTRY
1=CHANGE_ENTRY

2 =REMOVE_ENTRY
3=INSERT_ENTRY

Req_Add, defines function

msg.d[1] byte
0-126

127

Area_Code,
IB-slave number
master bus parameters

msg.d[2] word 0-760 Add_Offset

msg.d[4-240] m bytes 0-255 Data[240]

This command allows to hand over the master bus parameters or the slave
parameter data files. This is commendable, if no static data base exists on the DE-
VICE and the parameterization should happen from the HOST program without
using SyCon-IBM tool.

Two ways to download data files have been implemented. A data file can be
downloaded either in one call (single download) or if it is to large in block calls
(sequenced download) into an internal download area (length 1000 bytes). After
the download cycle is finished completly the specified data is checked and copied
afterwards into the task access area. Then the next download can be started into
the freed download area.

The parameter Req_Add defines the download function in case of download a
slave data set.
To defined a new entry use the command NEW_ENTRY.
Is is possible to delete an existing entry by setting the parameter to REMO-
VE_ENTRY. All other entries that are set up at execution time of this command
with higher Area_Code number will be corrected downwards. That means if
entry 3 is removed for example, entry 4 will be 3 and entry 5 will be 4 and so on.
It is possible to insert a new entry between to existing data sets by setting the pa-
rameter to INSERT_ENTRY. All other entries that are set up at execution time of
this command with higher and equal Area_Code number will be corrected up-
wards. That means if entry 3 is inserted for example, old entry 3 will be 4 and old
entry 4 will be 5 and so on.
It is possible to simply change and existing entry if the parameter is set up to va-
lue CHANGE_ENTRY. Other entries are not influenced by this command.

The Message Interface 34

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

The parameter Area_Code fixes the destination area (master parameter or slave
parameter file). The offset in the download area where the data will be copied
from the message is fixed in the variable Add_Offset.
If a node data file shall be transferred sequenced, the command IBM_Star-
t_Seq must be activated before to initialize the download sequence. The se-
quence will be finished after the command IBM_End_Seq is called. Even then
the parameters will be checked and be set valid if no error is recognized. The
download of the bus parameters needs no sequenced download.

See below the corresponding structure in the header file:

IBM_DOWNLOAD_REQUEST

answer message

variable type value signification

msg.rx byte 16 receiver = user at HOST

msg.tx byte 3 transmitter = IBM-Task

msg.ln byte 0 length of message

msg.nr byte j number of the message

msg.a byte 68 answer = IBM_Download

msg.f byte f error, state

msg.b byte 0 no command

msg.e byte 0 extention, not used

The Message Interface 35

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Possible values for msg.f are the following:

error number msg.f signification

0 no error

52 CON_NI, Area_Code unknown

57 CON_SE, sequence error

70 slave address already configured

71 data set field length faulty

72 configuration field data length faulty

73 additonal table field length faulty

74 pcp field length faulty

75 whole data set size inconsistent

76 additional table inconsistent

77 output process data offset address oversteps maximum range

78 input process data offset address oversteps maximum range

79 too much input and output offset addresses configured

80 number of configured modules does not correspond to the
number of configured offset addresses

81 number of configured output modules does not correspond to the
number of output offset addresses

82 number of configured input modules does not correspond to the
number of input offset addresses

83 the real output process data length of the slave resulting from its
length code is smaller than the resulting value from the configured
output modules

84 the real input process data length of the slave resulting from its
length code is smaller than the resulting value from the configured
input modules

85 address conflict of output process data

86 address conflict of input process data

87 ID-code of module indicates process output data only , but inputs
modules are also defined

88 ID-code of module indicates process input data only, but output
modules are also defined

89 ID-code of module indicates process output data, but no output
modules defined

90 ID-code of module indicates process input data only, but no input
modules defined

91 slave configured to wrong level or level out of range 0 - 12

92 configured length code is unknown and can not be handled

93 a slave data shall be removes that doesn't exits

94 a slave data set of an active slave shall be changed. That is not
possible in online configuration mode. Use
IBM_Set_Configuartion to switch off the module

95 an entry shall be removed that configuration data differs from the
message data

96 the length indicator for the PCP relevant structure
IBM_DEV_PCP_DATA is invalid. Please check that if PCP is
confivgured the length is set to value 47dec.

97 the check of the IBM_KBL_ENTRY_STAT failed. The structure
contains invalid data. please check the contents of the structure in
accordance to the chapter 'coding of the device parameter data
set'

The Message Interface 36

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

98 after loading the bus parameter the termination of the KBL-list
failed. internal error, consult Hilscher

99 allocation of resources fo all PCP-KBL-entries of all slaves failed.
internal error, consult Hilscher.

120 a local bus segment contains remote bus slaves in the same
level.

121 a local bus segment defined as group does contain different
group or alternative numbers. Or a leading branch IB device of an
alternative, has non or a wrong alternative number

122 a slave does have an alternative number, but a group number. A
group number must be defined for that device too.

The Message Interface 37

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.5.1 The Download of the Master Parameters

4.2.5.1.1 Coding of the Master Parameter Data Set

variable name type explanation

bBaudRate byte selects the baudrate; at the moment 500kBits
only supported

bFormat byte global storage format for word oriented process
data

bAutoClear byte behavior if a slave component is defective

bReserved byte reserved byte

bScanTimeInterval byte scan time for missing devices in multiples of
800msec

bTimeoutDataCycle byte timeout to execute a valid data cycle in multiples
of 8 msec, before network is rescanned and
reseted

bMaxNumOfBundledError byte maximum number of bundle data cycle error
before network is rescanned and reseted

usNumOfIDScanAfterError word maximum number of ID scans directly following
a defective data cycle to get the network
reoperative before network is reseted

bNumOfStopBits byte Number of stopbits the master sends with each
IB data telegram.

The bBaudRate value isn't processed by the DEVICE at the moment. So the va-
riable can be seen as an reserved value for further use.

The bFormat value changes the interpretation of as word oriented declared
process data from LSB/MSB to MSB/LSB and vice versa.
#define IBM_INTEL 0
#define IBM_MOTOROLA 1

The bAutoClear parameter fixes the behavior of the DEVICE if one or many
devices are defective in the network or reporting an error:

#define IBM_AUTO_CLEAR_OFF 0x00
The DEVICE don't cares the status of the connected devices and the automatic
network reset in case of an error is disabled. Depending on the configured
ScanTimeInterval value the master tries to get all modules operative
every configured interval time.

#define IBM_AUTO_CLEAR_MISSING 0x01
The DEVICE will stop the communication to the whole network and will reset
it, if it detects a missing device after the first network scan or during process
data transfer runtime.

#define IBM_AUTO_CLEAR_ON_MOD_ERR 0x02
The DEVICE will stop the communication to the whole network and will reset
it, if at least one device reports the InterBus-S specific module error. Module
error capable devices report such an error normally if they have detected a
short circuit or low power in their external peripherals.

The Message Interface 38

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

#define IBM_AUTO_CLEAR_ON_MOD_ERR_MISSING 0x03
The DEVICE will stop the communication to the whole network and will reset
it, if it detects a missing device after the first network scan or during process
data transfer runtime or if at least one device reports the InterBus-S specific
module error.

The parameter bScanTimeInterval enables or disables the automatic net-
work scan for missing devices. If the value is set to 0 than this function is dis-
abled. The first network scan which is normally done by the DEVICE once after
its initialization is not influence by this value and is done anyway. Values une-
qual 0 configure a scan time in multiples of 800msec. One thing is important to
know: the process data transfer is interrupted during the scan so that a hold input
process data could be measured. The outputs of the modules during this scan
aren't influences and hold the old value. We recommend here to choose the value
7 = 5600msec.

The variable bTimeoutDataCycle is the time in multiples of 8 millisecond,
the DEVICE tries to execute and finish a started data cycle when a data cycle
tranfers error was detected. After a data cycle error the DEVICE starts always an
ID scan of the actual connected network before the data cycle is started again. If
the timer value is overstepped because of multiple data cycle errors the network
is resetted automatically. Depending on the choosen values of bAutoClear and
bScanTimeInterval the DEVICE stops the whole communication or tries to
reinitialize the network. We recommend here a value of 100 = 800msec.

Sometimes it can happen that a bundled count of directly following data cycles
are defective. The maximum number of permissible bundled data cycle error is
fixed in the variable bMaxNumOfBundledError. We recommend here to
choose the value 20. If the value is overstepped the DEVICE will react depending
on the choosen values of bAutoClear and bScanTimeInterval and stops
the whole communication or tries to reinitialize the network

If a data cycle error happens the DEVICE will automatically start an ID-Scan to
locate the error sources within the network. If also the following scan could not
be finished without an error, the DEVICE retries the ID scan usNumO-
fIDScanAfterError times before the DEVICE behave like in the variables
bAutoClear and bScanTimeInterval configured.

Some revisions of old InterBus slave chips generations like SUPI-I or II, have the
characteristic to need an enlarged stopbit in each received telegram to synchroni-
ze them right in any case on each incoming telegram. Our used master chip can
enlarge the stopbit only by one whole bit so the variable bNumOfStopBits
changes between one or two send stopbits in each telegram. We recommend to
use the two stopbits = value 1, because you don't know even if you have some ol-
der chips running in your system or if you have a SUPI-III generation only net-
work.
#define IBM_1STOPBITS 0
#define IBM_2STOPBITS 1

See the below the corresponding structure in the header file:

BUS_IBM

The Message Interface 39

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.5.1.2 Download Message of the Bus Parameters

command message

variable type value signification

Message header msg.rx byte 3 receiver = user at HOST

msg.tx byte 16 transmitter = IBM-Task

msg.ln byte 14 length of message

msg.nr byte j number of the message

msg.a byte 0 no answer

msg.f byte 0 error, status

msg.b byte 68 command = IBM_Download

msg.e byte k extension

BUS_IBM msg.d[0] byte 0 Req_Adr, not used

msg.d[1] byte 127 Area_Code

msg.d[2] word 0 Add_Offset

msg.d[4] byte 0 Baud_Rate

msg.d[5] byte 0,1 Format

msg.d[6] byte 0,1,2,3 Auto_Clear

msg.d[7] byte 0 Reserved

msg.d[8] byte 0-255 Scan_Time_Interval

msg.d[9] byte 0-255 Timeout_DataCycle

msg.d[10] byte 0-255 Max_Num_Of_BundledError

msg.d[11] word 0-65535 Num_Of_IDScan_AfterError

msg.d[13] byte 0,1 Num_Of_StopBits

After this message is sent to the DEVICE, it will always perform a network reset
(outputs will be cleared in the slave modules) and start to compare the configu-
red slave configuation with the connected configuration. If differences are de-
tected, then the DEVICE will perform depending on the parameter Auto_Cle-
ar, directly a shut down afterwards, or will continue and try to establish the con-
nection to all right configured slave devices.

REMARK-I: the bus parameter can be downloaded multiple times. Every call
will cause a reset and a rescan of the connected network.
REMARK-II: all alternative declared interfaces in the slave parameter data set
will be always be disabled automatically by the DEVICE after the bus parameter
are downloaded.
REMARK-III: if the command IBM_Set_Configuration was used pre-
viously before the download of the bus parameter is used again, the DEVICE will
set up the bus constellation in accordance to this last received configuration com-
mand. This command has always priority against the restriction of REMARK-II.

The Message Interface 40

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.5.2 Download of the Device Parameter Data Sets

4.2.5.2.1 Coding of the Device Parameter Data Set

variable name type explanation

IBM_DEV_PRM_HEADER usDevParalen word length of whole data set inclusive the length
parameter

bDvFlag byte enables or disables this device parameter data
set in the DEVICE

bLengthCode byte InterBus specific length code of the device

bIdentCode byte InterBus specific identification code of the device

bInstallDepth byte installation level of the device within the network

bGroupNumber byte assigned group number, for simultanous group
en-or disabling.

bAlternativeNumber byte assigned alternative number for alternative
grouping

bOctetString[8] octet string 8 bytes reserved for further use, set to 0

IBM_DEV_CFG_DATA usCfgDataLen word Length of the following I/O module data
configuration inclusive the length of the size
indicator

ausTypeLength[...] word array I/O configuration data, see corresponding
HEADER file for structure

IBM_DEV_PRM_ADD_TAB usAddTabLen word Length of the following add. tab data inclusive
the length of the size indicator

bInputCount byte number of input offsets following

bOutputCount byte number of output offsets following

ausIO_Offsets[...] word array I/O offset addresses in the dual-port memory see
corresponding HEADER file for structure

IBM_DEV_PCP_DATA usPcpDataLen word Length of the following PCP channel specific
data inclusive the length of the size indicator

IBM_KBL_ENTRY_
STAT

structure communication reference table for PCP capable
devices

The main length indicator usDevParaLen fixes the length of the whole data
block inclusive the length of the size indicator itself. The length can be calculated
with the formula:

usDevParaLen = sizeof(IBM_DEV_PRM_HEADER)
 usCfgDataLen +
 usAddTabLen +
 usPcpDataLen+

The Message Interface 41

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

This variable is followed by a special bit field called bDvFlag, declaring the pa-
rameter data set as active or inactive. Only if the ACTIVE bit is set the DEVICE
will activate the network access for this device. That means if the bit is not set,
the slave parameter data set is not relevant for the DEVICE, but checked for data
consistencies within the set.

D7 D6 D5 D4 D3 D2 D1 D0

ACTIVE ALTI1 ALTI2 Reserved for further use

0 = interface 2 is not alternative grouping capable
1 = interface 2 is alternative grouping capable

0 = interface 1 is not alternative grouping capable
1 = interface 1 is alternative grouping capable

0 = device inactive in the actual configuration
1 = device active in the actual configuration

The next two bits are only relevant for InterBus branch modules or remote bus
only modules. The bits ALTI1 and ALTI2 matches to the particular real physical
interface of the module. In case of modules which have only one outgoing remote
interface the ALTI1 interface bit is not relevant. If the corresponding bits are set
for the two types of interfaces, the DEVICE will disable the real physical inter-
faces, if no modules are configured and connected to them. This guarantees, that
no timeout during the InterBus process data exchange occurs, when a cable is
connected to these interfaces. This is necessary for example if new alternative
slave groups wanted to be appended to the branch.
A disabled interface can be visible detected, if either the LD-LED for local bus
branche, or the RD -LED for remote bus branches is light on at the corresponding
module.

The Message Interface 42

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

The bLengthCode is a device specific parameter value that normally can be
read from the device label or manual and indicates how many process data the de-
vice will reserve within the InterBus process data shifting ring. The DEVICE will
compare this value with the real present one and denies the access to this device
if both values are unequal. Here is the list of all supported length codes

real process data length
width counted in bytes

length code of module

0 0

2 1

4 2

6 3

8 4

10 5

16 6

18 7

4 Bit 8

1 9

12 Bit 10

3 11

1 Bit 12

2 Bit 13

12 14

14 15

reserved, not supported 16

52 17

32 18

48 19

64 20

20 21

24 22

28 23

reserved, not supported 24-32

reserved, not supported 33-255

The Message Interface 43

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

The bIDCode is a device specific parameter value that normally can be read
from the device label or manual and classifies the type of module, if it is for ex-
ample a remote bus or local bus device, or if it is a PCP capable device. The DE-
VICE will compare this value with the real present one and denies the access to
this device if both values are unequal.
Because the InterBus allowes the segmentation of the network by socalled branch
interfaces which are capabable to switch on and off they outgoing interfaces, next
to the physically position in the InterBus ring, the bInstallDepth locates the
module within the network exactly. The DEVICE compares the configured value
with the real installation level and denies the access to this device if both values
are unequal. The installation depth of the first module in the ring begins always
with level value 0 and is increased by the value 1 for each passed level. Here is
an example:

0

1

1

0

Install_Depth

 level level
0 1

The Message Interface 44

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

It is possible to combine devices to groups, so that they can be switches on or off
together simultanously, indepentant of being direclty connected together or not.
The variable bGroupNumber assigns the device to a specific group. It can have
a value range of 0 up to 255. The value 0 means that the device isn't assigned to a
group.

A device can be also assigned to an alternative segment. An alternative is a con-
nected and related part of the network, that can be alternativly activated next to
the rest of the network during runtime. If the master finds now alternatives, it
switches off the physical interface of the previous connected branch device, so
that all alternatives are deactivated directly after the startup. The HOST program
itself decides during runtime by using the command IBM_Control-
_Active_Config- uration which of the alternative branches shall be acti-
vated and which not.

The ausTypeLength[...] array informs the DEVICE how the physical
process data within the slave's InterBus shifting register, fixed by its length code
and ID-code, shall be composed together. One entry in the ausTypeLength ta-
ble must result a corresponding entry in the ausIO_Offsets[...] table
which contains the dual-port memory offset address where to lay down the modu-
le data in case of input and where the read out the module data in case of output
logically. The table itself has the following structure.

variable name type explanation

ausTypeLength[...] word array type of process data and its length

see structure IBM_DEV_CFG_DATA in the header file

Here is the bitwise definition of one ausTypeLength entry that must be used
for every configured socalled logical module:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Dir WordSwap reserved process data length

process data length in mutilples of bits 0 - 8191 dec

1 = word swap active for modules with even byte length
0 = word swap deactive

1 = module type output process data
0 = module type input process data

To distinguish if the module is either an output or an input one in the view of the
DEVICE, the upper bit Dir in the ausTypeLength decides the data direction.
If the bit is set then the module is defined as an output module. The order of the
module type don't care and module can be mixed configured.
The bit WordSwap is only relevant if the process data length of the con-
figured module has a multiple size of 16 bits. That means 16,32,48 etc. . If it is
set then the DEVICE will swap automatically the resulting byte order word wise
if the global address format for the process data in the master parameter is set to
mode IBM_MOTOROLA.

The Message Interface 45

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

If a device for example has length code of 1 and an ID-code of 3 this constellati-
on indicates a device with 16 bits input and output process data. Then the
CfgData table could look like.

variable name contents

usCfgDataSize 0006 hex = 6 bytes in length, inclusive the length indicator

ausTypeLength[0] 8010 hex = 16 bits output process data

ausTypeLength[1] 4010 hex = 16 bits input process data, word swap active

One entry in the CfgData table must result a corresponding entry in the
AddTab table, if it is not configured there as 'don't care' module. In this table the
offset address in the dual-port memory of each process data is held down, where
the DEVICE has to start later the reading of the data as outputs and writing it to
the device or starts to write it into as inputs during the process data cycle transfer.
See the following structure:

variable name type explanation

bInputCount byte number of inputs following in the IO_Offset table

bOutputcount byte number of outputs following in the IO_Offset table

ausIO_Offsets[...] word array IO_Offsets in the order: first all input offsets then
all output offsets

see structure IBM_DEV_PRM_ADD_TAB in the header file.

The ausIO_Offset's have to be placed in order to each configured I/O module
in the table CfgData so that the DEVICE has a relationship between both tables
and can associate them together later when doing the I/O exchange. For an output
process data module it results a corresponding output offset, for an input process
data module it results a corresponding input offset.
If inputs and outputs are configured at the same time, the offset table must con-
tain first all input offsets and then all output offsets. All offsets must be configu-
red as byte offsets, except an offset for a single bit with a process data length of 1
in the CfgData table.There an offset must be set up like the following figure
illustates:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Bit offset Byte offset

byte offset in the dualport memory 0 - 3583 dec

corresponding bit offset in the byte 0 -7dec

To complete the last example above, here is a related IBM_DEV_PRM_ADD
_TAB example:

The Message Interface 46

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

The word input module data shall be located at byte 4-5dec. The two byte outputs
shall be located at byte 0-1dec:

variable name contents

usAddTabLen 0008 hex = 8 bytes in length, inclusive the length indicator

bInputCount 01 hex = 1 input offset following

bOutputcount 01 hex = 1 output offset following

ausIO_Offsets[0] 0004 hex = input module to addressbyte 4-5

ausIO_Offsets[1] 0000 hex = output module to addres byte 0-1

The usPcpDataLen must be set fix to the value 47dec in case of a PCP-capa-
able device. It's the length of this size indicator = 2 plus the fixed size of the com-
munication reference structure IBM_KBL_ENTRY_STAT. A device is PCP
capable, if the two upper bits 7 and 6 in its bIdentCode are set to logical 1. If a
device is PCP incapable then the size must be set to 2 only. Naturally the follo-
wing PCP structure IBM_KBL_ENTRY_STAT must not be appended in this case.

typedef struct {
 unsigned char bComRef;
 unsigned char bLocalLsap;
 unsigned char bRemoteLsap;
 unsigned char bRemAddr;
 unsigned char bReserved;
 unsigned char bLliSap;
 unsigned char bConnType;
 unsigned char bMaxScc;
 unsigned char bMaxRcc;
 unsigned char bMaxSac;
 unsigned char bMaxRac;
 unsigned long ulAci;
 unsigned short usReserved;
 unsigned char bMultiplier;
 unsigned char bConnAttr;
 unsigned char bReqLen_h;
 unsigned char bReqLen_l;
 unsigned char bIndLen_h;
 unsigned char bIndLen_l;
 unsigned char abServSup[SUP_SERV_LEN];
 unsigned char abSymbol[SYMBOL_LEN];
 unsigned char* ptVfdPointer;
} IBM_KBL_ENTRY_STAT;

The Message Interface 47

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

bComRef: the communication reference is a clear specification for a communi-
cation relationship . Each slave can be configured by one communication refe-
rence. The value range goes from 2 to 63. This communication reference is used
later during runtime in the services IBM_READ or IBM_WRITE to address the
slave PCP channel. The communciation reference has nothing to do with the real
physical position of the slave in the InterBus network, it's only a logic address. If
more slaves are PCP capable and are configured, than the different bComRef va-
riables of the slaves must be set without any gap so that all values together results
a straight order from 2 up to 63 in maximum.
bLocalLsap: Local service access point. Without meaning, not handled and
must be set fix to the value 128dec.
bRemoteLsap: Remote service acces point:. Without meaning, not handled and
must be set fix to the value 128dec.
bRemAddr: remote address. Configures the remote partner within this communi-
cation reference for which the communication will be used to. This remote ad-
dress is calculated by counting the number of PCP slaves that are configured phy-
sically up to the current slave's position in the ring. So if it's the 3'rd PCP slave in
the ring for example, the remote address is 3. The value 0 is reserved for the ma-
ster. The value ranges from 1 to 63.
bLliSap: this atttribute configures the LLI-User. For the standard PMS con-
nection this attribute must be set fix to the value 0.
bConnTyp: configures the type of connection. In the InterBus protocol only the
master-master-acyclic method is allowed, so that the value must be set fix to 0.

bMaxScc: maximum send confirmed Request Counter. This attribute sets the
maximum allowed number of parallel confirmed services. For the standard PMS
connection the value is fix 1.
bMaxRcc: maximum receive confirmed Request Counter. This attribute sets the
maximum allowed number of parallel confirmed services. For the standard PMS
connection the value is fix 1.
bMaxSac: maximum send acknowledge Request Counter. This attribute sets the
maximum allowed number of parallel confirmed services. For the standard PMS
connection the value is fix 1.
bMaxRac: maximum receive acknowledge Request Counter. This attribute sets
the maximum allowed number of parallel confirmed services. For the standard
PMS connection the value is fix 1.
ulAci: this attribute sets if a connection supervision shall be activated or not.
Most of the remote PCP slaves do not support this feature, so that the value
should be set to 0.
bMultiplier: this value has no meaning for the current PCP protocol stack
and must be set to value 128.
bConnAttr: this attribute contains further information about the connection
that shall be established. This value must be set fix to 0.
bReqLen_h: this value contains the maximum number of high prior PMS-PDUs
data bytes in send direction in the view of the master, that could be send. High
prior messages are not allowed so the value must be set to 0.
bReqLen_l: this value contains the maximum number of low prior PMS-PDUs
data bytes in send direction in the view of the master, that could be send. This va-
lue range from minimum 51 up to 246 bytes in maximum. Be sure that the corre-
sponding slave the connection shall be established to will support this size in its
receive buffer, else it would deny the connection initalization.
bIndLen_h: this value contains the maximum number of high prior PMS-PDUs
data bytes in receive direction in the view of the master. High prior messages are

The Message Interface 48

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

not allowed so the value must be set to 0.
bIndLen_l: this value contains the maximum number of low prior PMS-PDUs
data bytes in receive direction in the view of the master. This value can range
from minimum 51 up to 246 bytes in maximum. The choice which value should
be taken here depends on the slave's maximum possible send length. So the recei-
ve value must be greater or at least equal to the maximum transmit length of the
slave.
The abServSup[...] is an array of 6 bytes. The first three bytes define in a
bit list,. which services the master could request through this connection as a cli-
ent from the slave. The bytes 4 to 6 defines which services the master must be
able to receive in case of requests from the slave. The field is checked during the
establishment of the connection. If the request bit list then indicates more suppor-
ted services then the slave on its side will support, the connection establishment
will be denied. Each pair of these three bytes have the same definition in their bit
constellation, but they can be configured different. The most connections support
the services READ and WRITE, so the corresponding bits in the field are usually
set. The service GET_OD = get object dictionary is not necessary to be configu-
red at all, but is often helpful to get out the objects that are supported by the sla-
ve.
Here is the definition of these bits:

Byte 1 and byte 4:
D7 D6 D5 D4 D3 D2 D1 D0

GET_OD n.support n.support n.support n.support n.support n.support n.support

Byte 2 and byte 5:
D7 D6 D5 D4 D3 D2 D1 D0

n.support n.support READ WRITE n.support n.support n.support n.support

Byte 3 and byte 6:
D7 D6 D5 D4 D3 D2 D1 D0

INF-REP. n.support n.support n.support n.support n.support n.support n.support

abSymbol[..]: This variable can contain the symbolic name of the communi-
cation reference. The first byte contains the length and the following next 11
bytes contain the name.
ptVfdPointer: this pointer is unused and must be configured to the value 0

The Message Interface 49

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Download example of a device parameter data set with the address 4, without
using the sequenced download procedure.

command message

variable type value signification

msg.rx byte 3 receiver = IBM-Task

msg.tx byte 16 transmitter = user at HOST

msg.ln byte 0-240 length of message

msg.nr byte j number of the message

msg.a byte 0 no answer

msg.f byte 0 error, status

msg.b byte 68 command = IBM_Download

msg.e byte k extension

msg.d[0] byte 0 Req_Adr, not used

msg.d[1] byte 4 Area_Code = device address

msg.d[2] word 0 Add_Offset, 0 = beginning of the internal
buffer

msg.d[4] word ??? Device_Para_Len = length of the following
data set + 2

msg.d[6] byte 0x80 Dv_Flag = ACTIVE

msg.d[7] byte 0x03 ID_Code = 0x03, input and output module

msg.d[8] byte 0x01 Length_Code = 16 bit data width

msg.d[9] byte 0x00 Install_Depth = level 0

msg.d[10-19 10 bytes 0 Octet1 - Octet10 (reserved)

msg.d[20] word ??? Dev_Cfg_Data_Len = size of the following
Dev_Cfg_Data_Table +2

msg.d[22] structure Dev_Cfg_Data_Table

msg.d[...] word ??? Dev_Add_Tab_Len, length of following
Dev_Add_Tab + 2

msg.d[...] byte ??? Input_count, number of following input
offsets

msg.d[...] byte ??? Output_count, number of following output
offsets

msg.d[...] word array IO_Offsets[...], byte offsets in the dual-port
memory where to locate the data

msg.d[...] word 2 Dev_Pcp_Data_Len fixed to value 2

The Message Interface 50

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.6 Example of Message Device Parameter Data Sets hexdecimal

No Input and output: IBS 24 BK-T, branch interface

03 10 1C 08 00 00 44 00, message header
00 00 00 00, rem adr etc
18 00 80 00 34 00 00 00 00 00 00 00 00 00 00 00, ID=34 length = 0
02 00 , no input and output modules
04 00 00 00 , no input and output offset
02 00 , for PCP extention

Input only: IBS 24 DI/LC-Local bus device/Level 1

03 10 20 08 00 00 44 00, message header
00 01 00 00, rem adr etc
1C 00 80 01 96 01 00 00 00 00 00 00 00 00 00 00, ID=96 length = 1
04 00 10 00, 16 bit input module
06 00 01 00 00 00, 1 input offset = 0
02 00, for PCP extention

Output only: IBS 24 DO/LC-Local bus device/Level 1

03 10 20 08 00 00 44 00, message header
00 02 00 00, rem adr etc
1C 00 80 01 95 01 00 00 00 00 00 00 00 00 00 00, ID=95 length = 1
04 00 10 80, 16 bit output module
06 00 00 01 00 00, 1 output offset = 0
02 00, for PCP extention

Input / Output: IBS 24 BK-I/O-T branch interface/Level 0

03 10 24 08 00 00 44 00, message header
00 03 00 00, rem adr etc
20 00 80 01 0B 00 00 00 00 00 00 00 00 00 00 00, ID=0B length = 1
06 00 10 80 10 00, 16 bit output module/16 bit input module
08 00 01 01 02 00 02 00, 1 input offset = 2 / 1 output offset = 2
02 00, for PCP extention

Input / Output: CIF 30-IBS, PCP-capable, services READ,WRITE, max PDU size
= 64

03 10 51 08 00 00 44 00, message header
00 03 00 00, rem adr etc
4D 00 80 15 F0 00 00 00 00 00 00 00 00 00 00 00, ID = F0, length = 15
06 00 80 00 80 80, 80(128dec) bit input module / 80 bit output module
08 00 01 01 07 00 02 00, 1 input offset = 7 / 1 output offset = 2
2F 00 02 80 80 01 00 00 00 01 01 01 01, CR = 2, L/RLsap = 80, maxXcc = 1
00 00 00 00 00 00 80 00, Aci = 0 , multiplier = 80
00 40 00 40 00 30 00 00 30 00, req.length = 40, ind length = 40, READ,WRITE
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The Message Interface 51

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.7 IBM_Device_Diag

command message

variable type value description

msg.rx Byte 3 receiver = IBM-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte 8 length of message header = 8

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer number

msg.f Byte 0 no error

msg.b Byte 66 command : IBM_Device_Diag

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 0...127 Dev_Adr

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0 unused

msg.
DataIdx

Byte 0 unused

msg.
DataCnt

Byte 0 unused

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 0 unused

The command serves to read out the internally stored device specific diagnostic
structures. The device number must be fixed in msg.DeviceAdr and corre-
sponds to the physical position of the device module in the network. The value
range goes from 0 to 127.

The diagnostic structure can be requested anytime from the DEVICE. The corre-
sponding status bit (Sl_diag) of the device in the global bus status field indica-
tes, if the status structure of it has changed since the HOST last read access. So
the HOST has to request the status diagnostic information of a device only then,
when its relevant bit in Sl_diag area in the global status field is set.

On each read access of the HOST the error buffer will be deleted and refilled
with zero values. The counter for the actual stored error values will also be rese-
ted, next to the corresponding Sl_diag bit of the device.

The Message Interface 52

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

answer message

variable type value signification

msg.rx byte 16 receiver = user at HOST

msg.tx byte 3 transmitter = IBM-Task

msg.ln byte 8+107max length of message

msg.nr byte j number of the message

msg.a byte 66 answer = IBM_Device_Diag

msg.f byte 0 error, state

msg.b byte 0 no command

msg.e byte 0 extension

msg.
DeviceAdr

byte 0...127 Dev_Adr

msg.
DataArea

byte 0 data area, unused

msg.
DataAdr

word 0 data address unused

msg.
DataIdx

byte 0 data index unused

msg.
DataCnt

byte 107 data count = length of diagnosis structure

msg.
DataType

byte 0 data type unused

msg.
Function

byte 0 function read unused

msg.d[0] byte Devicestatus_1

msg.d[1] byte Real_length_code

msg.d[2] byte Real_ident_code

msg.d[3-4] word Num_of_CRC_errors

msg.d[5] byte Online_error

msg.d[6] byte Num_of_entries

msg.d[7...
 106max]

union Error_Data[...]

The reading of the diagnostic information of a device causes the reset of the cor-
responding diagnostic bit in the 'global bus status field' of the dual-port memory.
Should the remote address in msg.DeviceAdr be out of range, the answer
message delivers the error code 161. Otherwise no error is recognized and the
message contains valid diagnostic data.
Every time the diagnostic field is read out, the internal Num_Of_Entries
counter will be reseted and the Event_Data field is cleared with 0.

The Message Interface 53

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Devicestatus_1:

D7 D6 D5 D4 D3 D2 D1 D0

Deactivat
ed

Interface
_1_Error

Interface
_2_Error

Reconfig
uration

Cfg_
Fault

Periphera
l_Fault

Error_Buf
f_Ovfl.

No_Resp
onse
device
not
respondi
ng and
missing

Error buffer overflow

device has detected perihperal
power failure or short circuit.

differences between device ident or length
code and the configured values. So check
both configured value in SyCon or in the
online downloaded configuration.

device reports reconfiguration request

outgoing interface 2 of the device is defective and causes a
timeout. The interface was switched off by the DEVICE.

outgoing interface 1 of the device is defective.and causes a timeout. The
interface was switched off by the DEVICE

device is deactivated in actual configuration and not handled. To enable the handling
of this device run SyCon tool and activate it in the actual configuration or change the
download configuration value 'active' in variable Dv_Flag when using the online
download method

Real_length_code:

This value is read out from the device directly and inserted here transparent. In
case of a configuration error this value can be compared with the configured
value.

Real_ident_code:

This value is read out from the device directly and inserted here transparent. In
case of a configuration error this value can be compared with the configured
value.

Num_of_CRC_errors:

For each reported checksum error this counter will be incremented globally. An
increasing counter is an indication for electrical disturbance in the field bus in the
surrounding of the device.

Online_error:

In this byte the actual online error of the device station is held down. See the ta-
ble Err_event of the global bus status field for possible entries.

The Message Interface 54

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Num_of_entries:

This value indicates how many entries the following Error_data buffer con-
tains. For each reported and detected error its number is stored into this buffer
while the Num_of_Entries value is incremented by one.

Error_Data[...]:

variable name type explanation

Error[0] byte detected error. Value range is decribed below in
the next table

Reserved[0] byte no used, but reserved

... if more errors are
detected

Error[x] detected error. Value range is decribed below in
the next table

Reserved[x] no used, but reserved

Error[...]:

Error description error source help

0 no error event

30 device was missing in the last
activated network scan cycle

device /
configuration

check if the configured
module is present in the
network or check wiring

31 device reports other
identification code than the
configured value

device /
configuration

compare configured
identification code of the
module with the real
present one

32 device reports other length
code than the configured value

device /
configuration

compare configured length
code of the module with
the real present one

33 further device at outgoing
interface 1detected which are
not configured

device /
configuration

check the real
configuration for these non
configured devices

34 further device at outgoing
interface 2 detected which are
not configured

device /
configuration

check the real
configuration for these non
configured devices

35 device was missing in the last
activated network scan cycle

device /
configuration

serach the whole branch
where the device is
located for other
configuration faults

36 device reports peripheral error device check if the power of the
external periphery of this
module is connected or if
outputs producing short
circuits

The Message Interface 55

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

Error description error source help

37 device reports configuration
request

device reset the master DEVICE
and the InterBus will be
reconfigurated

38 device has detected a
checksum error while data
transmission

device check surrounding of the
device if some other
electrical disturbing
devices can be found

40 defective outgoing interface 1(
local bus branch or installation
branch)

device check the wiring of the
corresponding IB interface

41 defective outgoing interface 2(
remote bus)

device check the wiring of the
corresponding IB interface

42 device has not reported its
ident and length code right in
the last made network scan
cycle

network check surrounding of the
device if some other
electrical disturbing
devices can be found

43 device missed during runtime,
because of interrupted InterBus
connection

network check network wiring
between this device and
the physically present
device before

44 the contact to this module was
lost, because of an interrupted
network connection in a local
bus branch

local bus
branch

check network wiring
between this device and
the physically present
devices before

45 in the last made network scan
cycle during runtime, this
device was the physically last
one to which the DEVICE could
establish the InterBus scan

network check network wiring
between this device and
the physically present
device behind

46 the connection to this module
was forced stopped

HOST program the HOST forced the
DEVICE to shut down the
communication to all
devices

See below the corresponding structure in the header file:

IBM_SINGLE_DEVICE_DIAGNOSTIC

The Message Interface 56

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.8 IBM_Get_Physical_Configuration

command message

variable type value description

Message header msg.rx Byte 3 receiver = IBM-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte 0 unused

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer number

msg.f Byte 0 no error

msg.b Byte 75 command : IBM_Get_Physical_Configuration

msg.e Byte 0
4
8

get the length code of all connected devices
get the ID-Code of all connected devices
get the physical installation level of all
connected devices

This command serves to read in the actual connected InterBus slave devices in
their length and ID-code and their installation level. The msg.e byte distinguis-
hes the different functions. When this command is performed the whole con-
nected and running InterBus network will be reseted and the outputs are brought
into save zero condition. The PCP communciation to existing connections are al-
so aborted and can not be initialized again. To bring back the card into normal
operation you have to perform a cold or warmstart to it.
Msg.e must be set to 0 first to start the real physical scan of the network. The
values 4 and 8 then will cause no network access any more and the values are re-
ported back from the internal buffer that was filled once at the scan before. If the
sequence is not kept in this way, the procedure is denied by the DEVICE with se-
quence error.

The Message Interface 57

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

answer message

variable type value signification

msg.rx byte 16 receiver = user at HOST

msg.tx byte 3 transmitter = IBM-Task

msg.ln byte x length of message

msg.nr byte j number of the message

msg.a byte 75 answer : IBM_Get_Physical_Configuration

msg.f byte see table
below

error, state

msg.b byte 0 no command

msg.e byte 4
8

12

msg.d[...] contains length codes
msg.d[...] contains ID-Codes
msg.d[...] contains installation levels

msg.d[0] byte a length code or ID-code or installation level
of physical first InterBus slave

msg.d[1] byte b length code or ID-code or installation level
of physical second InterBus slave

msg.d[x-1] byte c length code or ID-code or installation level
of physical x InterBus slave

Possible values for msg.f are the following :

error number msg.f signification

0 msg.d[0] contains valid data no error

150 sequence error, please check
msg.e of HOST command
message

HOST program

101 expected ID or length code
can not be found within a
device during set up of the
network

network

102 too many devices are
connected to the DEVICE

network

103 configuration has changed
during the ID-Scan

network

104 set up the actual network
configuration after the
ID-scan failed

network

105 device which was just
scanned produce timeout now

network

106 expected device is missing,
while setting up the
configuration

network

107 configuration has changed
during runtime, a running
device is not responding any
more

network

108 no connection to the InterBus network

The Message Interface 58

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

In case of returning the installation levels, the byte values per slave device con-
tain some further information about the device in its upper nibble.

To get the real installation level use the following mask to filter the lower four
bits:
#define INSTALLATIONDEPTH_MSK 0x0f

The following mask indicates if this device is an remote or local bus device:
#define LOCALBUSDEVICE_MSK 0x10

The following mask indicates if the outgoing remote interface was detected as
phyiscally defective during the ID-scan:
#define I2_ERROR_MSK 0x20

The following mask indicates if the outgoing branch interface was detected as
phyiscally defective during the ID-scan:
#define I1_ERROR_MSK 0x40

In case of returning the length levels, the byte values per slave device contain so-
me further information about the device in its upper three bits.

To get the real length code use the following mask to filter the lower five bits:

#define LENGTH_MSK 0x1F

#define MODULE_ERROR 0x80
#define CRC_ERROR 0x40
#define RECONFIGURATION 0x20

The Message Interface 59

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.9 IBM_Set_Configuration

command message

variable type value description

msg.rx Byte 3 receiver = IBM-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte x number of active slave devices 1..126max

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer number

msg.f Byte 0 no error

msg.b Byte 76 command : IBM_Set_Configuration

msg.e Byte 0 unused

msg.d[0] Byte 1
0

Slave Device 0 enable
Slave Device 0 disabe

msg.d[1] Byte 1
0

Slave Device 1 enable
Slave Device 1 disabe

- - - -

msg.d[x-1] Byte 1
0

Slave Device x-1 enable
Slave Device x-1disabe

This command serves to change the active constellation of the connected Inter-
Bus network. It is possible to switch on and off specific InterBus devices.
If the msg.d[i] of the corresponding slave module i it set to 1 = 'enable, the
module will be enabled and is taken into the InterBus ring. The next process data
cycle after execution of this command will include the modules process data.
If the msg.d[i] of the corresponding slave module i it set to 0 = 'disable', the
module will be disabled. The next process data cycle will not include the modules
process data any more.

Pay attention to the following points, which results from physical characteristics
of the InterBus.

Slave devices of a local bus branch are switchable only together. That means,
if a device of a local bus branch shall be disabled, it is necessary not only to
set msg.d[i] of the corresponding slave to 0, but all the other msg.d[i]
of the other slave modules of this branch too. If the local bus branch shall be
enabled again, all msg.d[i] of the local bus branch must be set to 1.

If a device shall be disabled, that is located within the remote bus or installati-
on remote bus, the following msg.d[i] of all slaves which actually have a
higher or equal installation level must be set to 0 too.

The DEVICE checks both mentioned consistencies within the wished new Inter-
Bus constellation. Futhermore the DEVICE checks the msg.ln parameter. This
parameter must always be equal to the actual number of configured slave devices.

REMARK: The last used IBM_Set_Configuration bus constellation which
could be executed without error is saved within the DEVICE. If afterwards new
bus parameters are configured with the IBM_Download command, the DEVICE
will perform a network reset first, but set up the bus constellation in accordance
to this last IBM_Set_Configuration command.

The Message Interface 60

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

answer message

variable type value signification

msg.rx byte 16 receiver = user at HOST

msg.tx byte 3 transmitter = IBM-Task

msg.ln byte x length of message

msg.nr byte j number of the message

msg.a byte 76 answer : IBM_Set_Configuration

msg.f byte see table
below

error, state

msg.b byte 0 no command

msg.e byte 0 unused

Possible values for msg.f are the following :

error number msg.f explanation signification

0 command could be executed
without an error

no error

101 expected ID or length code
can not be found within a
device during set up of the
network

a device that should be
enabled reports a different ID
or length code or is missing in
the configuration

103 configuration has changed
during the ID-Scan

multiple network error

104 inconsistent InterBus branch more slave devices were
detected while switching on a
branch than expected

105 InterBus timeout opening an Interbus branch
produces timeout

107 configuration has changed
during runtime, a running
device is not responding any
more

the DEVICE has no access to
the InterBus any more. Check
wiring between DEVICE and
first slave

154 requested mesage
inconsistant

msg.ln and number of
configured devices do not
match or not all local bus
module in local bus are
disabled or further remote
devices are not disable

The Message Interface 61

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.2.10 IBM_Control_Active_Configuration

command message

variable type value description

msg.rx Byte 3 receiver = IBM-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte x+1 number of slaves to be influenced

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer number

msg.f Byte 0 no error

msg.b Byte 82 command :
IBM_Control_Active_Configuration

msg.e Byte 0 unused

msg.d[0] Byte 0,1 bSwitch_Code

msg.d[1] Byte 0-126 first device_no

- - -

msg.d[x] Byte 0-126 x device_no

This service allows to selectively activate or deactivate IBS devices.

The parameter bSwitch_Code specifies into which states the IBS devices li-
sted in the list of IBS device numbers beginning at msg.d[1...] are to be
switched. If the value

#define IBM_SEGMENT_OFF 0x00 is used, the specified IBS device and
all devices that depend on this device are switched off. These are:
- all IBS devices belonging to the same bus segment (local bus).
- all IBS belonging to the same logical group.
- IBS devices which come physically after the specified IBS device.

#define IBM_SEGMENT_ON 0x01 is used, the specified IBS device and all
devices that depend on this IBS device are switched on. Please observe the spe-
cial treatment for groups that can be switched alternatively.

The parameter list bDevice_No defines the device numbers of the IBS devices
that are to be switched. The value range goes from 0 up to 126 and reflects the
physical position of the IBS device in the ring, start counting at the first device
and the value 0. The list can consist of an array of devices that shall be influen-
ced. For every stated device the master will switch the state and all dependant
other devices.

The Message Interface 62

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

answer message

variable type value signification

msg.rx byte 16 receiver = user at HOST

msg.tx byte 3 transmitter = IBM-Task

msg.ln byte x length of message

msg.nr byte j number of the message

msg.a byte 82 answer : IBM_Control_Active_Configuration

msg.f byte see table
below

error, state

msg.b byte 0 no command

msg.e byte 0 unused

Possible values for msg.f are the following :

error number msg.f explanation detailed information

0 command could be executed
without an error

no error

101 expected ID or length code
can not be found within a
device during set up of the
network

a device that should be
enabled reports a different ID
or length code or is missing in
the configuration

103 configuration has changed
during the ID-Scan

multiple network error

104 inconsistent InterBus branch more slave devices were
detected while switching on a
branch than expected

105 InterBus timeout opening an Interbus branch
produces timeout

107 configuration has changed
during runtime, a running
device is not responding any
more

the DEVICE has no access to
the InterBus any more. Check
wiring between DEVICE and
first slave

109 active,inactive conflict an IBS device should be
activated, but at least one
dependant physically previous
slave is still disable. This slave
must be enabled before.

110 alternative conflict an alternative group should be
activated while a second
alternative is already active in
the same group. Switch off this
alternative group first, before
enabling the wished alternative

The Message Interface 63

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3 The ALPMLIPD-Task

The function of data transfer in PCP protocol is divided into individual layers
within the InterBus. Each layer has a defined functionality in this kind of Inter-
Bus communication. In our InterBus PCP implementation all layers are combined
together in one task called ALPMLIPD. So it builds up the layer ALI, PMS and
LLI in one step. The ALPMLIPD supports the follwing services:

IBM_Identify read out the identification information of a
slave device

IBM_Get_Objectdictionary read out the object dictionary and descrip-
tion of a slave device

Client-Services:

IBM_Read_Request read a defined object of a device

IBM_Write_Request write a defined object of a device with a
value

Server-Services:

IBM_Read_Indication read a defined object from HOST

IBM_Write_Indication write a defined object to HOST

IBM_Abort close an established communication of a
device

The Message Interface 64

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.1 IBM_Identify

command message

variable type value description

msg.rx Byte 1 receiver = ALPMLIPD-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte 8 length of extended header

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer

msg.f Byte 0 no error

msg.b Byte 17 command : IBM_Request

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0 unused

msg.
DataIdx

Byte 0 unused

msg.
DataCnt

Byte 0 unused

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 129 IBM_Identify

The service Identify serves to read identification information from a slave device.
The command message does not have any further specific parameters.

The Message Interface 65

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

answer message

variable type value signification

msg.rx Byte 16 receiver = HOST

msg.tx Byte 1 transmitter = ALPMLIPD-Task

msg.ln Byte 56 length of message

msg.nr Byte j number of the message

msg.a Byte 17 answer = IBM_Confirmation

msg.f Byte f error, state see corresponding table

msg.b Byte 0 no command

msg.e Byte 0 extension

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0 unused

msg.
DataIdx

Byte 0 unused

msg.
DataCnt

Byte x number of read data bytes
maximum 240 bytes

msg.
DataType

Byte 0 unused

msg.
Function

Byte 129 IBM_Identify

msg.d[0...15] Byte Array ASCII-string vendor_name[16]

msg.d[16...31] Byte Array ASCII-string model_name[16]

msg.d[32...47] Byte Array ASCII-string revision[16]

The resulting response message contains the slave device specific identification
information, Vendor_Name, Model-Name and Revision, that was delivered back
from the device.
Each string describes in ASCII format the given information of the device. The
first byte in each of the 3 16-bytes strings defines the length of the containment.

The Message Interface 66

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.2 IBM_Get_ObjectDictionary

command message

variable type value description

msg.rx Byte 1 receiver = ALPMLIPD-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte 8
20

length in case of index access
length in case of variable name access

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer

msg.f Byte 0 no error

msg.b Byte 17 command : IBM_Request

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0,1,2 access specification

msg.
DataAdr

Word 0-65535 object index

msg.
DataIdx

Byte 0 unused

msg.
DataCnt

Byte 0 unused

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 132 IBM_Get_OD

msg.d[0] Byte Stringlength of variable name

msg.d[1...11] Byte array variable name, 0 terminated.

With the Get_ObjectDictionary service it is possible to read one or more object
descriptions from the device. The service distinguishes the long from and the
short form description which can be requested. The long form is optional and
must be supported by the slave device. The number of transmitted Object descrip-
tions depend on their length and the maximum PDU transmit size.
#define ACC_SPEC_GETOV_ALL_INDEX 0
#define ACC_SPEC_GETOV_ALL_NAME 1
#define ACC_SPEC_GETOV_STARTINDEX 2
#define ACC_SPEC_GETOV_INDEX_LONG 0x80
#define ACC_SPEC_GETOV_NAME_LONG 0x81
#define ACC_SPEC_GETOV_STARTINDEX_LONG 0x82

In case of the short form access the backcoming object description will not inlcu-
de
- Description - Local-Adress-OV-OB
- Password - Local-Adress-ST-OV
- Access-Groups - Local-Adress-S-OV
- Access-Rights - Local-Adress-DV-OV
- Local-Address - Local-Adress-DP-OV
- Name
- Extention

The Message Interface 67

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

For reading the simple object description the object index must inserted in the
msg.DeviceAdr. Or in case of name access the name of the variable must be
inserted in the msg.d[0...11] field. For reading just some or all object
descriptions the index of the first (startindex) must be inserted in
msg.DeviceAdr.

answer message

variable type value signification

msg.rx Byte 16 receiver = HOST

msg.tx Byte 1 transmitter = ALPMLIPD-Task

msg.ln Byte 56 length of message

msg.nr Byte j number of the message

msg.a Byte 17 answer = IBM_Confirmation

msg.f Byte f error, state see corresponding table

msg.b Byte 0 no command

msg.e Byte 0 extension

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0-65535 object index

msg.
DataIdx

Byte 0 unused

msg.
DataCnt

Byte x number of read data bytes
maximum 240 bytes

msg.
DataType

Byte 0 unused

msg.
Function

Byte 132 IBM_Get_OD

msg.d[0...240] Byte Array VAR_TYP Object structure see below

typedef struct {
 USIGN16 index;
 USIGN8 obj_code;
 USIGN8 nof_elements;
 USIGN16 index_of_type;
 USIGN8 length;
 T_ACCESS access;
 USIGN8 *int_addr;
 STRINGV symbol[SYMBOL_LEN];
 STRING8 extension[EXTEN_LEN];
} T_VAR_TYP_LONG;

typedef struct {
 USIGN16 index;
 USIGN8 obj_code;
 USIGN8 nof_elements;
 USIGN16 index_of_type;
 USIGN8 length;
} T_VAR_TYP_SHORT;

The Message Interface 68

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.3 IBM_Read_Request

command message

variable type value description

msg.rx Byte 1 receiver = ALPMLIPD-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte 8 length of extended header

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer

msg.f Byte 0 no error

msg.b Byte 17 command : IBM_Request

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0-65535 object index

msg.
DataIdx

Byte 0-255 object subindex

msg.
DataCnt

Byte 0 unused

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 1 IBM_Read

The HOST command serves to read out a specific object from a PCP capabable
slave device. The communication reference defines the communication partner
which shall be addressed with this service. This value must be fixed in
msg.DeviceAdr. The value 0,1 are reserved and cannot be used. The master
supports up to 64 communication references, so the upper limit is 63 for this va-
lue. The object index in msg.DataAdr and object subindex in msg.DataIdx
are fixing the object to be read. A subindex of zero refers always to the entire ob-
ject - thus permitting even a complete array to be read. A subindex not equal to
zero refers to an element in an array and is not permissible for simple objects.
Please note that the first element of an array has the subindex 1. The service IB-
M_Read = 1 must be inserted in msg.DataFnc.

The Message Interface 69

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.4 IBM_Read_Confirmation

answer message

variable type value signification

msg.rx byte 16 receiver = HOST

msg.tx byte 1 transmitter = ALPMLIPD-Task

msg.ln byte 8+x
8

12

if msg.f = 0 length of message
if msg.f != 0 and if msg != 0x81
if msg.f = 0x81

msg.nr byte j number of the message

msg.a byte 17 answer = IBM_Confirmation

msg.f byte f error, state see corresponding table

msg.b byte 0 no command

msg.e byte 0 extension

msg.
DeviceAdr

byte 2-63 communication reference

msg.
DataArea

byte 0 unused

msg.
DataAdr

word 0-65535 object index

msg.
DataIdx

byte 0-255 object subindex

msg.
DataCnt

byte x number of read data bytes
maximum 240 bytes

msg.
DataType

byte 0 unused

msg.
Function

byte 1 IBM_Read

read data msg.d[0...(x-1)] byte array read data

or instead of

optional additional error
description in case of msg.f =
0x81

msg.d[0] byte 0-255 Error Class

msg.d[1] byte 0-255 Error Code

msg.d[2-3] word 0-65535 Additional Code

The DEVICE answer message contains the read data as a transparent byte stream
in the msg.d[...] location. The number of read data bytes is fixed in
msg.DataCnt. In case of an error the variable msg.f contains an error code of
the corresponding error table described in one of the next chapters called 'Error
Codes in PCP Protocol'.
If the slave device denies the access of the wished service and the DEVICE re-
sponds with msg.f error 0x81, then additional error information is included in
the response message. This four byte structure information is directly taken from
the slaves negative response message transparently. The meaning of the different
Error Classes and Codes are defined by the slaves manufactuerer and are normal-
ly explained in the description manual of the slave product itself.

The Message Interface 70

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.5 IBM_Write_Request

command message

variable type value description

msg.rx Byte 1 receiver = ALPMLIPD-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte 8+x length of message

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer

msg.f Byte 0 no error

msg.b Byte 17 command : IBM_Request

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0-65535 object index

msg.
DataIdx

Byte 0-255 object subindex

msg.
DataCnt

Byte x number of data bytes to be written
maximum 240bytes

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 2 IBM_Write

msg.d[0...(x-1)] byte array write data

The HOST command serves to write a specific object of a PCP capable slave de-
vice. The communication reference defines the communication partner which
shall be addressed with this service. This value must be fixed in
msg.DeviceAdr. The value 0,1 are reserved and cannot be used. The master
supports up to 64 communication references, so the upper limit is 63 for this va-
lue. The object index in msg.DataAdr and object subindex in msg.DataIdx
are fixing the object to be read. A subindex of zero refers always to the entire ob-
ject - thus permitting even a complete array to be written. A subindex not equal to
zero refers to an element in an array and is not permissible for simple objects.
Please note that the first element of an array has the subindex 1. The service IB-
M_Write = 2 must be inserted in msg.DataFnc.

The Message Interface 71

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.6 IBM_Write_Confirmation

answer message

variable type value signification

msg.rx byte 16 receiver = HOST

msg.tx byte 1 transmitter = ALPMLIPD-Task

msg.ln byte 8
12

if msg.f != 0x81
if msg.f = 0x81

msg.nr byte j number of the message

msg.a byte 17 answer = IBM_Confirmation

msg.f byte f error, state see corresponding table

msg.b byte 0 no command

msg.e byte 0 extension

msg.
DeviceAdr

byte 2-63 communication reference

msg.
DataArea

byte 0 unused

msg.
DataAdr

word 0-65535 object index

msg.
DataIdx

byte 0-255 object subindex

msg.
DataCnt

byte 0 unused

msg.
DataType

byte 0 unused

msg.
Function

byte 2 IBM_Write

optional additional error
description in case of msg.f =
0x81

msg.d[0] byte 0-255 Error Class

msg.d[1] byte 0-255 Error Code

msg.d[2-3] word 0-65535 Additional Code

The DEVICE answer informs about success or failure of the requested service. In
case of an error the variable msg.f contains an error code of the corresponding
error table described in one of the next chapters called 'Error Codes in PCP Proto-
col'.
If the slave device denies the access of the wished service and the DEVICE re-
sponds with msg.f error 0x81, then additional error information is included in
the response message. This four byte structure information is directly taken from
the slaves negative response message transparently. The meaning of the different
Error Classes and Codes are defined by the slaves manufactuerer and are normal-
ly explained in the description manual of the slave product itself.

The Message Interface 72

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.7 IBM_Read_Indication

command message

variable type value description

msg.rx Byte 16 receiver = HOST

msg.tx Byte 1 transmitter = ALPMLIPD-Task

msg.ln Byte 8 length of extended header

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer

msg.f Byte 0 no error

msg.b Byte 17 command : IBM_Indication

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0-65535 object index

msg.
DataIdx

Byte 0-255 object subindex

msg.
DataCnt

Byte 0 unused

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 1 IBM_Read

The DEVICE indication serves to read a specific object from the HOST. When
the HOST receives the service and has finished its execution, then the correspon-
ding IBM_Read_Response service has to be send back to the DEVICE.

The object index in msg.DataAdr and object subindex in msg.DataIdx are
fixing the wished HOST object to be read.

The Message Interface 73

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.8 IBM_Read_Response

answer message

variable type value signification

msg.rx byte 1 receiver = ALPMLIPD-Task

msg.tx byte 16 transmitter = HOST

msg.ln byte 8+238max length of message

msg.nr byte j number of the message

msg.a byte 17 answer = IBM_Response

msg.f byte f error, state see corresponding table

msg.b byte 0 no command

msg.e byte 0 extension

msg.
DeviceAdr

byte 2-63 communication reference

msg.
DataArea

byte 0 unused

msg.
DataAdr

word 0-65535 object index

msg.
DataIdx

byte 0-255 object subindex

msg.
DataCnt

byte 1-240 number of read data bytes

msg.
DataType

byte 0 unused

msg.
Function

byte 1 IBM_Read

msg.d[0-237] byte array read data

This HOST command build the answer to a previously requested IBM_Rea-
d_Indication message. The HOST has to hand over the data of the corre-
sponding object index and subindex in the msg.d[...] field.

The Message Interface 74

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.9 IBM_Write_Indication

command message

variable type value description

msg.rx Byte 16 receiver = HOST

msg.tx Byte 1 transmitter = ALPMLIPD-Task

msg.ln Byte 8+238max length of message

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer

msg.f Byte 0 no error

msg.b Byte 17 command : IBM_Indication

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0-65535 object index

msg.
DataIdx

Byte 0-255 object subindex

msg.
DataCnt

Byte 0 number of data bytes to be written

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 2 IBM_Write

msg.d[0-237] byte array write data

The DEVICE indication serves to write a specific object of the HOST. When the
HOST receives the service and has finished its execution, then the corresponding
IBM_Write_Response service has to be send back to the DEVICE.

The object index in msg.DataAdr and object subindex in msg.DataIdx are
fixing the wished HOST object to be written. The data that should be written is
located in msg.d[...] area.

The Message Interface 75

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.10 IBM_Write_Response

answer message

variable type value signification

msg.rx byte 1 receiver = ALPMLIPD-Task

msg.tx byte 16 transmitter = HOST

msg.ln byte 8 length of extended header

msg.nr byte j number of the message

msg.a byte 17 answer = IBM_Response

msg.f byte f error, state see corresponding table

msg.b byte 0 no command

msg.e byte 0 extension

msg.
DeviceAdr

byte 2-63 communication reference

msg.
DataArea

byte 0 unused

msg.
DataAdr

word 0-65535 object index

msg.
DataIdx

byte 0-255 object subindex

msg.
DataCnt

byte 0 unused

msg.
DataType

byte 0 unused

msg.
Function

byte 2 IBM_Write

This HOST command build the answer to a previously requested IBM_Wri-
te_Indication message.

The Message Interface 76

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.11 IBM_Abort

command message

variable type value description

msg.rx Byte 1 receiver = ALPMLIPD-Task

msg.tx Byte 16 transmitter = HOST

msg.ln Byte 8 length of extended header

msg.nr Byte j number of message (optional)

msg.a Byte 0 no answer

msg.f Byte 0 no error

msg.b Byte 17 command : IBM_Request

msg.e Byte 0 unused

msg.
DeviceAdr

Byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0 unused

msg.
DataIdx

Byte 0 unused

msg.
DataCnt

Byte 0 unused

msg.
DataType

Byte 0 unused

msg.
DataFnc

Byte 165 IBM_Abort

The service Abort serves to close a PCP connection to a slave device. The com-
mand message does not have any further specific parameters.

The Message Interface 77

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

answer message

variable type value signification

msg.rx byte 16 receiver = HOST

msg.tx byte 1 transmitter = ALPMLIPD-Task

msg.ln byte 8
12

if msg.f = 0 length of message
if msg.f = 0x81

msg.nr byte j number of the message

msg.a byte 17 answer = IBM_Confirmation

msg.f byte f error, state see corresponding table

msg.b byte 0 no command

msg.e byte 0 extension

msg.
DeviceAdr

byte 2-63 communication reference

msg.
DataArea

Byte 0 unused

msg.
DataAdr

Word 0 unused

msg.
DataIdx

Byte 0 unused

msg.
DataCnt

Byte 0 unused

msg.
DataType

Byte 0 unused

msg.
Function

byte 165 IBM_Abort

optional additional error
description in case of msg.f =
0x81

msg.d[0] byte 0-255 Error Class

msg.d[1] byte 0-255 Error Code

msg.d[2-3] word 0-65535 Additional Code

The Message Interface 78

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

4.3.12 Error Codes in PCP Protocol

Definition No.
hex

No.
dez

Description

 0x00 0 No error

ALI_INITIATE_ERR 0x41 65 Connection could not be opened
By the first request the connection has to be opened by sending an
initiate-telegram. If the remote-partner confirmed this initiate negative, the
connection could not be opened and the request will be reject with this error.
Please check the local and remote configuration of this CR in KBL

ALI_REJECT_PAR_SRV 0x43 67 Too many parallel services on one CR
ALI received Reject service with Reject Code for Max-Service-Overflow.

ALI_REJECT_PDU_LENGTH 0x45 69 requested PDU length exceeds the configured maximum PDU length

ALI_REJECT_SRV_NOT_SUPP 0x46 70 requested service is not supported by the client master DEVICE

ALI_REMOTE_ERR 0x81 129 Error in application of remote-partner
The communication partner (server) has reject the request with an error.
Possible reasons can be for example:
a) Access on an non existing object
b) Data-length of sending data is not consistent to data-length of object
c) buffer overflow

ALI_UNKNOWN_SERVICE 0x82 130 Unknown function in requested message
Check the function code in requested message

ALI_LOCAL_ERR 0x83 131 PCP communication basically not or wrong initalized for this slave
no InterBus connection to this slave during runtime, connection aborted or
the communication reference is basically wrong initialized.

ALI_F_VFD_WRONG_STATE 0x87 135 Local state does not allow to send
The master device don't have an actual configuration active, please make a
download of the configuration

ALI_F_TIMEOUT 0x8F 143 Timout of remote partner.
The service could be sent ot the remote station sucessfully, but the remote
station does not answer the request in time

ALI_CR_INVALID 0x97 151 Invalid Communication Reference
Please check requested CR parameter in message

ALI_UNKNOWN_SERVICE 0x9B 155 Invalid INTERBUS-PCP service
Check service of your request message

The Message Interface 79

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

5 General Procedure how to get the DEVICE operative without SyCon

Like in the chapters above described, the DEVICE supports the online configura-
tion without using the SyCon configuration tool. That means the DEVICE must
be initalized in its protocol parameters first (see. chapter protocol parameters),
then a warmstart must be proceeded. After that the network specific parameter
must be download via message functionality Start_Seq, Download, En-
d_Seq. By using these functions, the network device specific parameters must be
downloaded first and then the bus parameter must follow. The download of the
bus parameter is the trigger point for the DEVICE to start its network activity the
first time. Remember that these download parameter aren't stored in the DEVICE
FLASH memory and are lost if the DEVICE is reseted or powered down.
The just described procedure does only work, if the DEVICE isn't configured by
SyCon configuration tool, else the found FLASH configuration will always have
higher priority then the HOST defined configuration download parameter. To en-
sure that the DEVICE itself is not preconfigured by SyCon with a static FLASH
configuration, for example if you have receive a new delivered one, you have to
proceed the following initial sequence to get every DEVICE working:

5.1 Using Device Driver Functions

1. DevOpenDriver(): Enable the link of the application to the device driver
2. DevInitBoard(): Link application to the specific DEVICE
3. DevPutTaskParameter(): Set up the protocol parameter
4. DevReset(WARMSTART): Execute a warm start command to DEVICE
5. DevGetBoardInfo(GET_DRIVER_INFO): Read driver state
6. Examine the variable bHostFlags in the backcoming driver state structure
7. If bHostFlags indicates the bits RDY and RUN then the DEVICE is configu-
red by SyCon. Then execute Delete database message to DEVICE by using
DevPutMessage() and DevGetMessage() procedure. Goto step 3 again
8. Use now DevPutMessage() and DevGetMessage() procedure to down-
load the network specific configuration. After the download of the bus parameter
data set the DEVICE automatically starts up the network.

5.2 Using direct access to the dual-port memory

1. Examine the cell bHostFlags directly. If cell indicates the bits RDY and
RUN then the DEVICE is configured by SyCon. Then execute delete data-
base message (see chapter in this manual) to DEVICE by using corresponding
message algorithm described in the toolkit general definitions ma-
nual. Goto step 1. If cell indicates RDY only then goto step 2.
2. Write protocol specific parameter into corresponding Task2Parameter
area.
3. Write WARMSTART = 0x40 into cell bDevFlags to execute the DEVICE's
warmstart.
4. Now download the network specific configuration via message procedure. Af-
ter the download of the bus parameter data set the DEVICE automatically starts
up the network.

General Procedure how to get the DEVICE operative without SyCon 80

Copyright * Hilscher Gesellschaft für Systemautomation mbH * Hotline and Support: +49 (0) 6190/9907-99 * Pi:IBM#10E

